• 제목/요약/키워드: Three-Dimensional Electrodes

검색결과 79건 처리시간 0.026초

Three-dimensional Molecular Director Simulation within a Unit Pixel of TFT-LCDs including Floating Electrodes

  • Jung, Sung-Min;Park, Woo-Sang
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.1151-1154
    • /
    • 2004
  • In this study, we presented a novel method to calculate unknown voltages on the floating electrodes introduced in a unit pixel of TFT-LCDs using three-dimensional molecular director simulation. For the simulation of the potential distribution profiles generated under the influence of the floating electrodes, we used the floating boundary condition on the surface enclosing the floating electrodes. The constraint for the floating boundary condition was derived from the charge neutrality condition about the floating electrodes disconnected from voltage sources. For the pixel with the floating electrodes patterned between the pixel and the data electrodes, we simulated the molecular director and the potential distribution in three-dimension, and then observed the location of the disclination lines around the edge of the pixel electrode. As a result, it was revealed that the floating electrodes significantly affect the electro-optical characteristics such as the location of the disclination line.

  • PDF

Development of a PZT Fiber/Piezo-Polymer Composite Actuator with Interdigitated Electrodes

  • Kim, Cheol;Koo, Kun-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • 제16권5호
    • /
    • pp.666-675
    • /
    • 2002
  • Piezoelectric Fiber Composites with Interdigitated Electrodes (PFCIDE) were previously introduced as an alternative to monolithic wafers with conventional electrodes for applications of structural actuation. This paper is an investigation into the performance improvement of piezoelectric fiber composite actuators by changing the matrix material. This paper presents a modified micro-electromechanical model and numerical analyses of piezoelectric fiber/piezopolymer matrix composite actuator with interdigitated electrodes (PFPMIDE). Various concepts from different backgrounds including three-dimensional linear elastic and dielectric theories have been incorporated into the present linear piezoelectric model. The rule of mixture and the modified method to calculate effective properties of fiber composites were extended to apply to the PFPMIDE model. The new model was validated when compared with available experimental data and other analytical results. To see the structural responses of a composite plate integrated with the PFPMIDE, three-dimensional finite element formulations were derived. Numerical analyses show that the shape of the graphite/epoxy composite plate with the PFPMIDE may be controlled by judicious choice of voltages, piezoelectric fiber angles, and elastic tailoring of the composite plate.

두 평면 전극 사이의 절연체 구조물에 의해 유도되는 양의 유전영동을 이용한 삼차원 입자 정렬기 (A Three-Dimensional Particle Focusing Channel Using the Positive Dielectrophoresis (pDEP) Guided by a Dielectric Structure Between Two Planar Electrodes)

  • 추현정;도일;조영호
    • 대한기계학회논문집A
    • /
    • 제33권3호
    • /
    • pp.261-264
    • /
    • 2009
  • We present a three-dimensional (3D) particle focusing channel using the positive dielectrophoresis (pDEP) guided by a dielectric structure between two planar electrodes. The dielectric structure between two planar electrodes induces the maximum electric field at the center of the microchannel, and particles are focused to the center of the microchannel by pDEP as they flow from the single sample injection port. Compared to the previous 3D particle focusing methods, the present device achieves the simple and effective particle focusing function without any additional fluidic ports and top electrodes. In the experimental study, approximately 90 % focusing efficiency were achieved within the focusing length of 2mm, on both x-z plane (top-view) and y-z plane (side-view) for $2{\mu}m$-diameter polystyrene (PS) bead at the applied voltage over 15 Vp-p (square wave) and at the flow rate below 0.01 ${\mu}l$/min. The present 3D particle focusing channel results in a simple particle focusing method suitable for use in integrated microbiochemical analysis system.

계단 모양 전극을 가진 미세펌프 해석 (SIMULATION OF A MICROPUMP WITH STEP ELECTRODES)

  • 김병재;이승현;성형진
    • 한국전산유체공학회지
    • /
    • 제15권4호
    • /
    • pp.40-45
    • /
    • 2010
  • The flow rate is higher in ACEO micro-pumps with step electrodes than in micro-pumps with planar asymmetric electrodes. In the present study, numerical simulations were made of a ACEO micro-pump with step electrodes to investigate the effects of electrode design parameters on the pumping flow rate. The electrical charge at the electrodes, the fluid flow, and potential were solved, taking into account the finite size of ions, that is, the steric effect. This effect is recognized to be capable of quantifying the electrical charge more accurately in the electrical double layer subject to high voltages. Geometrical parameters such as heights, widths, and gaps of three-dimensional electrodes were optimized to enhance the pumping flow rate. Moreover, the effect of amplitude and frequency of AC was studied.

Transverse dynamics of slender piezoelectric bimorphs with resistive-inductive electrodes

  • Schoeftner, Juergen;Buchberger, Gerda;Benjeddou, Ayech
    • Smart Structures and Systems
    • /
    • 제18권2호
    • /
    • pp.355-374
    • /
    • 2016
  • This paper presents and compares a one-dimensional (1D) bending theory for piezoelectric thin beam-type structures with resistive-inductive electrodes to ANSYS$^{(R)}$ three-dimensional (3D) finite element (FE) analysis. In particular, the lateral deflections and vibrations of slender piezoelectric beams are considered. The peculiarity of the piezoelectric beam model is the modeling of electrodes in such a manner that is does not fulfill the equipotential area condition. The case of ideal, perfectly conductive electrodes is a special case of our 1D model. Two-coupled partial differential equations are obtained for the lateral deflection and for the voltage distribution along the electrodes: the first one is an extended Bernoulli-Euler beam equation (second-order in time, forth order in space) and the second one the so-called Telegrapher's equation (second-order in time and space). Analytical results of our theory are validated by 3D electromechanically coupled FE simulations with ANSYS$^{(R)}$. A clamped-hinged beam is considered with various types of electrodes for the piezoelectric layers, which can be either resistive and/or inductive. A natural frequency analysis as well as quasi-static and dynamic simulations are performed. A good agreement between the extended beam theory and the FE results is found. Finally, the practical relevance of this type of electrodes is shown. It is found that the damping capability of properly tuned resistive or resistive-inductive electrodes exceeds the damping performance of beams, where the electrodes are simply linked to an optimized impedance.

활성탄 충진 3D 복극전기분해조를 이용한 ETA 처리 (Treatment of ETA wastewater using GAC as particle electrodes in three-dimensional electrode reactor)

  • 김란;김유진;신자원;김정주;박주양
    • 상하수도학회지
    • /
    • 제27권2호
    • /
    • pp.241-249
    • /
    • 2013
  • Ethanolamine (ETA) is widely used for alkalinization of water in steam cycles of nuclear power plants with pressurized water reactor. When ETA contained wastewater was released, it could increase COD and T-N. The treatment of the COD and T-N from ETA wastewater was investigated using the GAC as particle electrodes in three-dimensional electrode reactor (TDE). This study evaluated the effectiveness of GAC as particle electrode using different packing ratio at 300 V. The results showed that GAC-TDE could reduce ETA much more efficiently than ZVI-TDE at the mass ratio of GAC to insulator, 1:2. Additionally, The effect of applied electric potential to COD and T-N reduction was investigated. The results showed the high COD, T-N reduction and current efficiency at the low electric potential. Using the GAC-TDE will provide a better ETA reduction with reducing electrical potential dissipation.

전사 인쇄에 의한 3D와 다층의 Pt 전극의 CO가스 흡착 (CO Adsorption on Three-Dimensional and Multilayered Platinum Electrode Prepared through Transfer Printing)

  • 정윤서;최유정;신정희;정영훈;박종후;윤대호;조정호
    • 센서학회지
    • /
    • 제29권4호
    • /
    • pp.232-236
    • /
    • 2020
  • Three-dimensional (3D) multilayered Pt electrodes were fabricated to develop a porous electrode using a pattern-transfer printing process. The Pt thin films were deposited using a transferred sputtering pattern having a 250 nm line width on the substrate, and the uniform line patterns were efficiently transferred using our proposed method. Temperature-programmed desorption (TPD) analyses were used to evaluate the porosity of the electrodes. It was possible to distinguish between two resolved maxima at 168 and 227 ℃, which could be described in terms of desorption reactions on the Pt (111) planes. The results of the TPD analysis of the 3D and multilayered Pt electrodes prepared through transfer printing were compared to those of an electrode fabricated through screen printing using a commercial Pt-carbon paste commonly used as porous electrodes. It was confirmed that the 3D multilayered electrodes exhibited a desorption concentration approximately 100 times higher than that of the Pt-carbon composite electrode, and the desorption concentration increased by approximately 0.02 mg/mol per layer. The 3D multilayered electrode effectively functions as a porous electrode and a catalyst.

pH를 조절하여 제조한 카본제어로젤을 이용한 코인타입 유기계 슈퍼커패시터 전극 (pH-Controlled Synthesis of Carbon Xerogels for Coin-Type Organic Supercapacitor Electrodes)

  • 정지철;정원종
    • 한국재료학회지
    • /
    • 제33권10호
    • /
    • pp.430-438
    • /
    • 2023
  • In this study, we synthesized pH-controlled resorcinol-formaldehyde (RF) gels through the polymerization of two starting materials: resorcinol and formaldehyde. The prepared RF gels were dried using an acetone substitution method, and they were subsequently carbonized under nitrogen atmosphere to obtain carbon xerogels (CX_Y) prepared at different pH (Y). The carbon xerogels were utilized as active materials for coin-type organic supercapacitor electrodes to investigate the influence of pH on the electrochemical properties of the carbon xerogels. The carbon xerogels prepared at lower pH (CX_9.5 and CX_10) exhibited sufficient particle growth, with a three-dimensional network of particles during the RF gel formation, resulting in the development of abundant mesopores. Conversely, the carbon xerogels prepared at higher pH (CX_11 and CX_12) retained densely packed structures of small particles, leading to pore collapse and low specific surface areas. Consequently, CX_9.5 and CX_10 showed high specific surface areas, and provided ample adsorption sites for the formation of electric double layers with electrolyte ions. Moreover, the three-dimensional particle network in CX_9.5 and CX_10 significantly enhanced electrical conductivity. The presence of well-developed mesopores in these materials further facilitated the effective transport of electrolyte ions, contributing to their superior performance as organic supercapacitor electrodes. This study confirmed that pH-controlled carbon xerogels are one of the promising active materials for organic supercapacitor electrodes. Furthermore, we concluded that pH during RF gel formation is a crucial factor determining the electrode performance of the carbon xerogels, highlighting the need for precise pH control to obtain high-performance carbon xerogel electrodes.

압전섬유/압전지지 복합재 작동기의 전기-기계적 마이크로모델 (Micro-electromechanical Model of a Piezoelectric fiber/Piezopolymer matrix composite Actuator)

  • 김철;구건형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.372-377
    • /
    • 2001
  • Piezoelectric Fiber Composites with Interdigitated Electrodes (PFCIDE) were previously introduced as an alternative to monolithic wafers with conventional electrodes for applications of structural actuation. This paper is an investigation into the performance improvement of piezoelectric fiber composite actuators by changing the matrix material. This paper presents a modified micro-electromechanical model of a piezoelectric fiber/piezopolymer matrix composite actuator with interdigitated electrodes (PFPMIDE). Various concepts from different backgrounds including three-dimensional linear elastic and dielectric theories have been incorporated into the present linear piezoelectric model. The rule of mixture and the modified method to calculate the effective properties of fiber composites are extended to apply to the PFPMIDE model. The new model is validated comparing with available experimental data and other analytical results.

  • PDF

마이크로 채널 내 교류 전기 삼투 유동에 대한 PTV해석 (A Study on PTV analysis of AC Electroosmotic Flows in the Microchannel with Coplanar electrodes)

  • 허형석;강상모;서용권
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2006년도 추계학술대회 논문집
    • /
    • pp.113-116
    • /
    • 2006
  • AC-electroosmosis is one of the electrokinetic forces leading to phenomena peculiar in the microfluidics. This paper shows particle deformation in the microchannel with rectangular electrodes on the bottom wall for the AC-electroosmotic flows. We make a PDMS microchannnel with ITO electrodes To measure velocity distributions of the particles we used a three-dimensional particle tracking velocimetry (micro-PTV) technique this method is Particle tracking by interpolation the diffraction pattern ring diameter variations with the defocusing distances of base particle locations. we induce a function of frequency at the electrode. We find the velocity of particles is the most at the edge of the electrodes and Particles move to side wall or center of the channel for the bottom and middle.

  • PDF