• 제목/요약/키워드: Three-Dimensional Analysis

Search Result 6,340, Processing Time 0.036 seconds

Structural Analysis of Tunnel Structures by Two and Three Dimensional Modeling (2차원 및 3차원 모델링에 의한 터널구조물의 구조해석)

  • Kim, Rae-Hyun;Chung, Jae-Hoon;Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.97-102
    • /
    • 2002
  • Two dimensional Analysis has been applied to most of tunnel lining design in these days. Two dimensional analysis uses beam or curved beam element for finite element method. But because the behaviors of tunnel concrete lining structure is near to shell, it is required to model the tunnel lining as shell structure for safety design of tunnel lining structure. In this paper, two dimensional analysis by beam element and the three dimensional analysis by shell element of tunnel concrete lining are studied, in which 3 type of tunnel lining and lateral pressure factors are considered. As results of the study, three dimensional analyses of the behavior of tunnel concrete lining structure considering lateral pressure factor shows that the moment of three dimensional analysis is greater than those of two dimensional analysis. The results shows that three dimensional analysis is necessary for safety design of tunnel lining.

Applications of Three-Dimensional Measurement System for Shape Analysis -Focused on WBS and RapidForm 2004- (입체 형상 분석을 위한 3차원 계측시스템의 활용 -WBS와 RapidForm 2004를 중심으로-)

  • Lee Myung-Hee;Jung Hee-Kyeong
    • Journal of the Korean Society of Costume
    • /
    • v.55 no.5 s.95
    • /
    • pp.55-64
    • /
    • 2005
  • The concern with three-dimensional measurement has been growing in recent years. And over the last few years, several studies have been made on three-dimensional measurement. Some of the studies using a three-dimensional measurement have focused on type of form of human body and evaluation of fitness. But there has been no study about applications of three-dimensional measurement system for shape analysis. So, the purpose of this study was to investigate about application of three-dimensional mea-surement system lot shape analysis. The instrument and tools for three-dimensional measurement was Whole Body 3D scanner(model name: Exyma-WBS2H). Analysis program used in experiment is Rapid Form 2004 PPI (INUS technology, Int, Korea). The following results were obtained; 1. The point data using three-dimensional measurement system built 3D model. 2. The three-dimensional data were used to analyze length and curvature of shape. 3. The shape using three-dimensional measurement system could be used in variety field.

Performance Analysis of the Rectangular Fin (사각 휜에 대한 성능해석)

  • Gang, Hyeong-Seok;Yun, Se-Chang;Lee, Seong-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • Performance of a rectangular fin is investigated by a three dimensional analytical method. Heat loss and the temperature obtained from the three dimensional analysis are compared with those calculated from a two dimensional analysis. Fin effectiveness, fin resistance and fin efficiency for the rectangular fin are presented as a function of non-dimensional fin length and fin width. The results are obtained in the following : (1) heat loss calculated from the two dimensional analysis is the same as that obtained from the three dimensional analysis with adiabatic boundary condition in z-direction, (2) heat loss obtained from the two dimensional analysis approaches the value for the three dimensional analysis as the non-dimensional fin width becomes large, (3) fin effectiveness increases as non-dimensional fin length increases and non-dimensional fin width decreases, and vice versa for fin efficiency.

SHAPE OPTIMIZATION OF COMPRESSOR BLADES USING 3D NAVIER-STOKES FLOW PHYSICS

  • Lee K. D.;Chung J.;Shim J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.1-8
    • /
    • 2001
  • A CFD-based design method for transonic axial compressor blades was developed based on three-dimensional Navier-Stokes flow physics. The method employs a sectional three-dimensional (S3D) analysis concept where the three-dimensional flow analysis is performed on the grid plane of a span station with spanwise flux components held fixed. The S3D analysis produced flow solutions nearly identical to those of three-dimensional analysis, regardless of the initialization of the flow field. The sectional design based on the S3D analysis can include three-dimensional effects of compressor flows and thus overcome the deficiencies associated with the use of quasi-three-dimensional flow physics in conventional sectional design. The S3D design was first used in the inverse triode to find the geometry that produces a specified target pressure distribution. The method was also applied to optimize the adiabatic efficiency of the blade sections of Rotor 37. A new blade was constructed with the optimized sectional geometries at several span stations and its aerodynamic performance was evaluated with three-dimensional analyses.

  • PDF

Block Deformation Analysis Using Three-dimensional Discontinuous Deformation Analysis(DDA) (삼차원 불연속 변형 해석(DDA)을 이용한 블록거동해석)

  • 장현익;이정인
    • Tunnel and Underground Space
    • /
    • v.12 no.3
    • /
    • pp.158-170
    • /
    • 2002
  • Since the development of Discontinuous Deformation Analysis (DDA) by Shi (1984), there has been much improvement in the theory and programs. These, however, are all based on the assumption of a two-dimensional plane strain or plane stress state; and because a rock block system is a three-dimensional problem, a two-dimensional analysis has limited application. So a three-dimensional analysis is required in the design of rock slopes and underground spaces where three-dimensional discontinuities dominate stability. In this study three-dimensional DDA program is developed using the Shi's two-dimensional theory and program, and the two cases of three-dimensional block are analysed. The program is applied to one sliding-face blocks and wedge sliding and it gives the good results comparing to the exact solution. Multi-block cases will be analysed for many other application soon.

Static Analysis of Three Dimensional Solid Structure by Finite Element-Transfer Stiffness Coefficent Method Introducing Hexahedral Element (육면체 요소를 도입한 유한요소-전달강성계수법에 의한 3차원 고체 구조물의 정적 해석)

  • Choi, Myung-Soo;Moon, Deok-Hong
    • Journal of Power System Engineering
    • /
    • v.16 no.1
    • /
    • pp.78-83
    • /
    • 2012
  • The authors suggest the algorithm for the static analysis of a three dimensional solid structure by using the finite element-transfer stiffness coefficient method (FE-TSCM) and the hexahedral element of the finite element method (FEM). MATLAB codes were made by both FE-TSCM and FEM for the static analysis of three dimensional solid structure. They were applied to the static analyses of a very thick plate structure and a three dimensional solid structure. In this paper, as we compare the results of FE-TSCM with those of FEM, we confirm that FE-TSCM introducing the hexahedral element for the static analysis of a three dimensional solid structure is very effective from the viewpoint of the computational accuracy, speed, and storage.

A Study on the Design of Three-Dimensional Bending Machine (3차원 Bending Machine 설계에 관한 연구)

  • Lee, Choon-Man;Lim, Sang-Heon;Park, Dong-Keun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1852-1857
    • /
    • 2003
  • This study is concerned about the development of three-dimensional bending machine for heat exchanger. Recently, three-dimensional bending is required for various heat exchanger. The purpose of this study is design of three-dimensional bending machine by analysis of bending process and structural analysis simulation. The analysis is carried out by FEM simulation using DEFORM and CATIA V5 software. The copper-tube is modeled by shell elements and the machine is modeled by placing proper shell and solid finite elements and fictitious mass properties to represent the real one. The final results of analysis are applied to the design of three-dimensional bending machine and the machine is successfully developed.

  • PDF

COMPARATIVE STUDY OF THREE-DIMENSIONAL RECONSTRUCTIVE IMAGES OF FACIAL BONE USING COMPUTED TOMOGRAPHY (전산화단층상을 이용한 안면골의 3차원재구성상의 비교 연구)

  • Song Nam-Kyu;Koh Kwang-Joon
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.22 no.2
    • /
    • pp.283-290
    • /
    • 1992
  • The purpose of this study was to evaluate the spatial relationship of facial bone more accurately. For this study, the three-dimensional images of dry skull were reconstructed using computer image analysis system and three-dimensional reconstructive program involved CT. The obtained results were as follows: 1. Three-dimensional reconstructive CT results in images that have better resolution and more contrast 2. It showed good marginal images of anatomical structure on both three-dimensional CT and computer image analysis system, but the roof of orbit, the lacrimal bone and the squamous portion of temporal bone were hardly detectable. 3. The partial loss of image data were observed during the regeneration of saved image data on three-dimensional CT. 4. It saved the more time for reconstruction of three-dimensional images using computer image analysis system. But, the capacity of hardware was limited for inputting of image data and three-dimensional reconstructive process. 5. We could observe the spatial relationship between the region of interest and the surrounding structures by three-dimensional reconstructive images without invasive method.

  • PDF

Application of Simulated Three Dimensional CT Image in Orthognathic Surgery (악교정 수술에서 모의 조종된 3차원 전산화 단층촬영상의 응용)

  • Kim Hyung-Don;Yoo Sun-Kook;Lee Kyoung-Sang;Park Chang-Seo
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.28 no.2
    • /
    • pp.363-385
    • /
    • 1998
  • In orthodontics and orthognathic surgery. cephalogram has been routine practice in diagnosis and treatment evaluation of craniofacial deformity. But its inherent distortion of actual length and angles during projecting three dimensional object to two dimensional plane might cause errors in quantitative analysis of shape and size. Therefore, it is desirable that three dimensional object is diagnosed and evaluated three dimensionally and three dimensional CT image is best for three dimensional analysis. Development of clinic necessitates evaluation of result of treatment and comparison before and after surgery. It is desirable that patient that was diagnosed and planned by three dimensional computed tomography before surgery is evaluated by three dimensional computed tomography after surgery. too. But Because there is no standardized normal values in three dimension now and three dimensional Computed Tomography needs expensive equipments and because of its expenses and amount of exposure to radiation. limitations still remain to be solved in its application to routine practice. If postoperative three dimensional image is constructed by pre and postoperative lateral and postero-anterior cephalograms and preoperative three dimensional computed tomogram. pre and postoperative image will be compared and evaluated three dimensionally without three dimensional computed tomography after surgery and that will contribute to standardize normal values in three dimension. This study introduced new method that computer-simulated three dimensional image was constructed by preoperative three dimensional computed tomogram and pre and postoperative lateral and postero-anterior cephalograms. and for validation of new method. in four cases of dry skull that position of mandible was displaced and four patients of orthognathic surgery. computer-simulated three dimensional image and actual postoperative three dimensional image were compared. The results were as follows. 1. In four cases of dry skull that position of mandible was displaced. range of displacement between computer-simulated three dimensional images and actual postoperative three dimensional images in co-ordinates values was from -1.8 mm to 1.8 mm and 94% in displacement of all co-ordinates values was from -1.0 mm to 1.0 mm and no significant difference between computer-simulated three dimensional images and actual postoperative three dimensional images was noticed(p>0.05). 2. In four cases of orthognathic surgery patients, range of displacement between computer­simulated three dimensional images and actual postoperative three dimensional images in coordinates values was from -6.7 mm to 7.7 mm and 90% in displacement of all co-ordinates values was from -4.0 to 4.0 mm and no significant difference between computer-simulated three dimensional images and actual postoperative three dimensional images was noticed(p>0.05). Conclusively. computer-simulated three dimensional image was constructed by preoperative three dimensional computed tomogram and pre and postoperative lateral and postero-anterior cephalograms. Therefore. potentiality that can construct postoperative three dimensional image without three dimensional computed tomography after surgery was presented.

  • PDF

A Study on the Design and Development of Three Dimensional Bending Machine (3차원 Bending Machine 설계 및 개발에 관한 연구)

  • 이춘만;임상헌;김현진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1448-1451
    • /
    • 2004
  • This study is concerned about the design and development of three dimensional bending machine. The purpose of this study is design and development of three-dimensional bending machine by analysis of bending process and structural analysis simulation. The analysis is carried out by FEM simulation using DEFORM and CATIA V5 software. Based on this study, the three dimensional bending machine was developed. In order to evaluate a performance and reliability of the developed three dimensional bending machine, we used laser interferometer and three axial measuring system.

  • PDF