• 제목/요약/키워드: Three dimensional coordinates

검색결과 346건 처리시간 0.03초

사진측량기법을 이용한 엑스선영상의 3차원 모형화 (Three-dimensional Reconstruction of X-ray Imagery Using Photogrammetric Technique)

  • 김의명
    • 대한토목학회논문집
    • /
    • 제28권2D호
    • /
    • pp.277-285
    • /
    • 2008
  • 엑스선 영상은 의료분야에서 많이 활용되고 있으며 특히 인간의 골격형성 과정에서 발생할 수 있는 척추만곡의 변형을 파악하는 데 아주 효율적이다. 본 연구에서는 엑스선 영상의 사진기 검정과 엑스선 영상을 이용한 대상물의 3차원 좌표 결정에 중점을 두었다. 엑스선 사진기를 이용한 대상물의 좌표결정 과정은 엑스선 사진기 검정을 위해서 방사선이 투과되지 않게 제작된 쇠볼이 배치된 1차 검정대상물을 이용하여 엑스선 영상의 내부표정요소와 외부표정요소를 결정하고 이로 부터 엑스선에 교차하게 아크릴로 제작된 두 면을 가지고 있는 엑스선 검정장의 3차원 좌표를 결정하는 2단계 과정을 거쳤다. 사진측량기법에 의해 결정된 엑스선 검정장의 3차원 좌표값은 정밀하게 관측된 CMM과의 비교를 통하여 그 정확도를 평가하였으며 엑스선의 진행방향(X축)에 대한 오차가 Y축과 Z축에 비해 상대적으로 높게 나타났으나 Y축과 Z축에 대한 위치오차는 수 mm의 정확도를 나타내었다. 본 연구를 통해서 사진측량기법은 환자의 3차원 위치결정이나 의료용 교정기기를 제작하는데 도움을 줄 수 있을 것으로 사료된다.

A Fast Poisson Solver of Second-Order Accuracy for Isolated Systems in Three-Dimensional Cartesian and Cylindrical Coordinates

  • Moon, Sanghyuk;Kim, Woong-Tae;Ostriker, Eve C.
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.46.1-46.1
    • /
    • 2019
  • We present an accurate and efficient method to calculate the gravitational potential of an isolated system in three-dimensional Cartesian and cylindrical coordinates subject to vacuum (open) boundary conditions. Our method consists of two parts: an interior solver and a boundary solver. The interior solver adopts an eigenfunction expansion method together with a tridiagonal matrix solver to solve the Poisson equation subject to the zero boundary condition. The boundary solver employs James's method to calculate the boundary potential due to the screening charges required to keep the zero boundary condition for the interior solver. A full computation of gravitational potential requires running the interior solver twice and the boundary solver once. We develop a method to compute the discrete Green's function in cylindrical coordinates, which is an integral part of the James algorithm to maintain second-order accuracy. We implement our method in the {\tt Athena++} magnetohydrodynamics code, and perform various tests to check that our solver is second-order accurate and exhibits good parallel performance.

  • PDF

The impact of reorienting cone-beam computed tomographic images in varied head positions on the coordinates of anatomical landmarks

  • Kim, Jae Hun;Jeong, Ho-Gul;Hwang, Jae Joon;Lee, Jung-Hee;Han, Sang-Sun
    • Imaging Science in Dentistry
    • /
    • 제46권2호
    • /
    • pp.133-139
    • /
    • 2016
  • Purpose: The aim of this study was to compare the coordinates of anatomical landmarks on cone-beam computed tomographic (CBCT) images in varied head positions before and after reorientation using image analysis software. Materials and Methods: CBCT images were taken in a normal position and four varied head positions using a dry skull marked with 3 points where gutta percha was fixed. In each of the five radiographic images, reference points were set, 20 anatomical landmarks were identified, and each set of coordinates was calculated. Coordinates in the images from the normally positioned head were compared with those in the images obtained from varied head positions using statistical methods. Post-reorientation coordinates calculated using a three-dimensional image analysis program were also compared to the reference coordinates. Results: In the original images, statistically significant differences were found between coordinates in the normal-position and varied-position images. However, post-reorientation, no statistically significant differences were found between coordinates in the normal-position and varied-position images. Conclusion: The changes in head position impacted the coordinates of the anatomical landmarks in three-dimensional images. However, reorientation using image analysis software allowed accurate superimposition onto the reference positions.

Volumetric Interferometry Using Spherical Wave Interference for Three-dimensional Coordinate Metrology

  • Rhee, Hyug-Gyo;Chu, Ji-Young;Kim, Seung-Woo
    • Journal of the Optical Society of Korea
    • /
    • 제5권4호
    • /
    • pp.140-145
    • /
    • 2001
  • We present a new method of volumetric interferometer, which is intended to measure the three-dimensional coordinates of a moving object in a simultaneous way with a single optical setup. The method is based on the principles of phase-measuring interferometry with phase shifting. Two diffraction point sources, which are made of the polished ends of single-mode optical fibers are embedded on the object. Two spherical wavefronts emanate from the diffraction point sources and interfere with each other within the measurement volume. One wavefront is phase-shifted by elongating the corresponding fiber using a PZT extender. A CCD array sensor fixed at the stationary measurement station detects the resulting interference field. The measured phases are then related to the three-dimensional location of the object with a set of non-liner equations of Euclidean distance, from which the complete set of three-dimensional spatial coordinates of the object is determined through rigorous numerical computation based upon the least square error minimization.

3차원 로봇 시뮬레이션 환경을 위한 웹 기반의 사용자 스크립트 연동 시스템 개발 (Development of Web-based User Script Linking System for Three-dimensional Robot Simulation)

  • 양정연
    • 한국콘텐츠학회논문지
    • /
    • 제19권2호
    • /
    • pp.469-476
    • /
    • 2019
  • 로봇의 움직임은 3차원 공간상의 다관절 좌표계의 회전 및 이송으로 표현된다. 이러한 좌표계 모델링을 위해 동차 변환 행렬의 관계식으로 표현하나 복잡한 3차원 공간상의 움직임을 고려하여 시각화 기법을 이용한 시뮬레이션 환경 기반의 모델링 및 생성한 동작의 확인이 필수적이다. 기존 시뮬레이션 환경의 경우, 플랫폼 의존도가 높으면 정해진 명령어의 수행으로 구성되어 사용성 및 확장의 한계성이 있었다. 본 논문에서는, 웹 기반의 3차원 시뮬레이션 환경을 구축하고, 소형 웹 서버 모듈과 사용성이 용이한 Python 스크립트의 연동 방식을 통해 높은 사용자 접근성을 얻고자 한다. 또한 로봇 제어를 위한 비선형 모델의 적용 사례를 통해 제안된 시스템의 연산 능력, 프로세스 관리 방식의 성능 및 사용자 스크립트 연동을 통한 확장성을 검증하고자 한다.

삼차원 응시 위치의 실 시간 추적 시스템 구현 (Design and Implementation of Real-time three dimensional Tracking system of gazing point)

  • 김재한
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 V
    • /
    • pp.2605-2608
    • /
    • 2003
  • This paper presents design and implementation methods of the real-time three dimensional tracking system of the gazing point. The proposed method is based on three dimensional data processing of eye images in the 3D world coordinates. The system hardware consists of two conventional CCD cameras for acquisition of stereoscopic image and computer for processing. And in this paper, the advantages of the proposed algorithm and test results ate described.

  • PDF

3차원 방향성 보간 기법 (3D directional Interpolation Algorithm)

  • 허신;이봉준;이철희
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 하계종합학술대회 논문집(5)
    • /
    • pp.138-141
    • /
    • 2000
  • In this paper, we present a new interpolation algorithm for three-dimensional images. Generally, Image interpolation is carried out along the three orthogonal coordinates. However, such a interpolation algorithm along orthogonal coordinates do not utilize the contour of 3 dimensional objects. In this paper, we propose a new directional interpolation algorithm that searches the best interpolation direction for 3-dimensional objects. Experiments with brain MR images show promising results.

  • PDF

3차원 공간에서 코일스프링의 강성에 관한 연구 (A Study on the Stifness of Coil Spring in the Three Dimensional Space)

  • 이수종
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권5호
    • /
    • pp.1130-1139
    • /
    • 2001
  • Springs are widely utilized in machine element. To find out stiffness of coil spring, the space beam theory using the finite element method is adopted in this paper. In three dimensional space, a space frame element is a straight bar of uniform cross section which is capable of resisting axial forces, bending moments about two principal axes in the plane of its cross section and twisting moment about its centroidal axis. The corresponding displacement degrees of freedom are twelve. The displacements of nodal points due to small increment of force are calculated by the finite element method and the calculated nodal displacements are added to coordinates of nodal points. The new stiffness matrix of the system using the new coordinates of nodal points is adopted to calculated the another increments of nodal displacements, that is, the step by step method is used in this paper. The results of the finite element method are fairly well agreed with those of various experiments. Using MATLAB program developed in this paper, spring constants can be predicted by input of few factors.

  • PDF

Comparison of three midsagittal planes for three-dimensional cone beam computed tomography head reorientation

  • Lee, Eon-Hwa;Yu, Hyung-Seog;Lee, Kee-Joon;Han, Sang-Sun;Jung, Hwi-Dong;Hwang, Chung-Ju
    • 대한치과교정학회지
    • /
    • 제50권1호
    • /
    • pp.3-12
    • /
    • 2020
  • Objective: This study compared three prominent midsagittal planes (MSPs) to identify the MSP that best approximates the true symmetrical MSP. Methods: Forty-three patients (mean age, 23.0 ± 8.20 years) were grouped as follows: group 1 consisted of 10 patients with skeletal Class I and a menton (Me) deviation of < 2 mm; group 2, 11 patients with skeletal Class III and a Me deviation < 2 mm; group 3, nine patients with skeletal Class III and a Me deviation of 2 to less than 4 mm; and group 4, 13 patients with skeletal Class III and an Me deviation ≥ 4 mm. The candidate MSPs were established by three-dimensional (3D) cone beam computed tomography (CBCT) reorientation methods (RMs): (1) the MSP perpendicular to the Frankfort horizontal (FH) plane while passing through the crista galli and basion; (2) the MSP including the nasion, incisive foramen, and basion; (3) the MSP including the nasion, anterior nasal spine, and posterior nasal spine. The mean absolute distances (MADs) to the MSPs were calculated from the coordinates of 1,548 points on 129 CBCT images. The differences in the values of the 3D coordinates among RMs were compared. Results: The MADs of the three RMs showed significant differences (p < 0.05). Most of the differences in values of the coordinates were not significant among RMs. Conclusions: Although the differences in distance among the three MSPs were minor, the MSP perpendicular to the FH plane while passing through the crista galli and basion best approximated the true symmetrical MSP.