• Title/Summary/Keyword: Three dimensional FEM analysis

Search Result 301, Processing Time 0.025 seconds

Impact Behavior of Laminated Composite using Progressive Failure Model (단계적 파괴 모델에 의한 적층 복합재료의 충격거동 해석)

  • 강문수;이경우;강태진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.102-105
    • /
    • 2000
  • Recently, applications of integrated large composite structures have been attempted to many structures of vehicles. To improve the cost performance and reliability of the integrated composite structures, it is necessary to judge structural integrity of the composite structures. For the judgement, we need fracture simulation techniques for composite structures. Many researches oil the fracture simulation method using FEM have been reported by now. Most of the researches carried out simulations considering only matrix cracking and fiber breaking as fracture modes, and did not consider delamination. Several papers have reported the delamination simulation, but all these reports require three-dimensional elements or quasi three- dimensional elements for FEM analysis. Among fracture mechanisms of composite laminates, delamination is the most important factor because it causes stiffness degradation in composite structures. It is known that onset and propagation of delamination are dominated by the strain energy release rate and interfacial moment. In this study, laminated composite has been described by using 3 dimensional finite elements. Then impact behavior of the laminated composite is simulated using FEM(ABAQUS/Explicit) with progressive failure mechanism. These results are compared with experimental results.

  • PDF

Characteristic Analysis of Eddy Current Testing According to the finite Element formulations (와전류탐상의 3차원 유한요소 정식화에 따른 특성 분석)

  • Lee, Hyang-Beom
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.5
    • /
    • pp.384-390
    • /
    • 2005
  • In the numerical analysis of En (eddy current testing) using 3-dimensional FEM (finite element method), MVP (magnetic vector potential) and electric scalar potential are used as variables in conductor region. Three dimensional modeling makes number of unknowns increase, and the degree of freedom of variables also makes number of unknowns increase. Because of this reason, modified UP is used to reduce the number of unknowns. Gauge condition is enforced artificially on existing FEM formulations to insure the uniqueness of MVP. So in this paper the effects of these FEM formulation procedures on ECT are investigated and the appropriate FEM formulation is suggested for accurate ECT simulation.

Development of Three Dimensional Chloride Ion Penetration Model Based on Finite Element Method (유한요소법을 이용한 3차원 염해 침투 예측 모델의 개발)

  • Choi, Won;Kim, Hanjoong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.43-49
    • /
    • 2015
  • Most of agricultural structures located in seashore could not avoid rapid deterioration of concrete because chloride-ion and $CO_2$ gradually penetrate into concrete. However, since most of models can be able to describe the phenomenon of penetration by using one or two dimensional models based on finite difference method (FDM), those modes can not simulate the real geometry and it takes a lot of computational time to complete even the calculation. To overcome those weaknesses, three dimensional numerical model considering time dependent variables such as surface concentration of chloride and diffusion coefficient of domain based on finite element method (FEM) was suggested. This model also included the neutralization occurred by the penetration of $CO_2$. Because the model used various sizes of tetrahedral mesh instead of equivalent rectangular mesh, it reduced the computational time to compare with FDM. As this model is based on FEM, it will be easily extended to execute multi-physics simulation including water evaporation and temperature change of concrete.

Analysis of PSC Box Girder Anchorage Zone using FEM and 2D SUB-3D STM Approach (유한요소법 및 유사 3 차원 스트릿-타이 모델 방법을 이용한 PSC 박스거더 정착부의 해석)

  • Yun, Young-Mook;Kim, Seung-Eock;Oh, Jin-Woo;Park, Jung-Woong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.2
    • /
    • pp.113-129
    • /
    • 2000
  • This study evaluates the behavior and strength of an anchorage zone of the prestressed concrete box girder bridge on the Kyungboo highway railroad using the 2D SUB-3D STM approach and a linear elastic finite element analysis. The 2D SUB-3D STM approach utilizes several two-dimensional sub strut-tie models that represent the compressive and tensile stress flows of each projected plane of the three-dimensional structural concrete in the selection of a three dimensional strut-tie model, evaluation of the effective strengths of the concrete struts, and verification of the geometric compatibility condition and bearing capacity of the critical nodal zones in the selected three-dimensional strut-tie model. The finite element analysis uses an 8-node brick element and the longitudinal prestressing force is considered as the equivalent nodal force. Analysis results show that the 2D SUB-3D STM approach and linear elastic finite element method can be effectively applied to the analysis and design of three-dimensional structural concrete including a prestressed concrete box girder anchorage zone.

  • PDF

Numerical Analysis of Eddy Currant Testing with Three Dimensional cracked Pipe by using Finte Element Method (유한요소법을 이용한 3차원 관결함의 와전류탐상 수치해석)

  • Won, Sung-Yean;Lee, Hyang-Beom;Shin, Young-Gil
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.220-222
    • /
    • 1999
  • This paper presents a numerical analysis of the eddy current testing with cracked pipe using finite element method (FEM). ${\vec{A}},\;{\phi}-{\vec{A}}$ method is adopted for the formulation of 3-dimensional(3-D) FEM with the brick element. The cracks investigated here are the inner and outer surface of axial symmetry, 90 degree circular one. The algorithm of 3-D numerical analysis is employed for the axisymmetric pipe with the cracks. In order to verify the validity of 3-D numerical analysis, the results are compared with those of 2-D analysis with the same type of the model. The differential impedance is obtained by using energy method and its locus are various 8-shaped curves for each cracks. The ICCG method is used for the calculation of a matrix.

  • PDF

Computational finite element model updating tool for modal testing of structures

  • Sahin, Abdurrahman;Bayraktar, Alemdar
    • Structural Engineering and Mechanics
    • /
    • v.51 no.2
    • /
    • pp.229-248
    • /
    • 2014
  • In this paper, the development of a new optimization software for finite element model updating of engineering structures titled as FemUP is described. The program is used for computational FEM model updating of structures depending on modal testing results. This paper deals with the FE model updating procedure carried out in FemUP. The theoretical exposition on FE model updating and optimization techniques is presented. The related issues including the objective function, constraint function, different residuals and possible parameters for FE model updating are investigated. The issues of updating process adopted in FemUP are discussed. The ideas of optimization to be used in FE model updating application are explained. The algorithm of Sequential Quadratic Programming (SQP) is explored which will be used to solve the optimization problem. The possibilities of the program are demonstrated with a three dimensional steel frame model. As a result of this study, it can be said that SQP algorithm is very effective in model updating procedure.

Analysis of Elastic-Plastic J Integrals for 3-Dimensional Cracks Using Finite Element Alternating Method (유한요소 교호법을 이용한 삼차원 균열의 탄소성 J 적분 해석)

  • Park, Jai-Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.2
    • /
    • pp.145-152
    • /
    • 2009
  • SGBEM(Symmetric Galerkin Boundary Element Method)-FEM alternating method has been proposed by Nikishkov, Park and Atluri. In the proposed method, arbitrarily shaped three-dimensional crack problems can be solved by alternating between the crack solution in an infinite body and the finite element solution without a crack. In the previous study, the SGBEM-FEM alternating method was extended further in order to solve elastic-plastic crack problems and to obtain elastic-plastic stress fields. For the elastic-plastic analysis the algorithm developed by Nikishkov et al. is used after modification. In the algorithm, the initial stress method is used to obtain elastic-plastic stress and strain fields. In this paper, elastic-plastic J integrals for three-dimensional cracks are obtained using the method. For that purpose, accurate values of displacement gradients and stresses are necessary on an integration path. In order to improve the accuracy of stress near crack surfaces, coordinate transformation and partitioning of integration domain are used. The coordinate transformation produces a transformation Jacobian, which cancels the singularity of the integrand. Using the developed program, simple three-dimensional crack problems are solved and elastic and elastic-plastic J integrals are obtained. The obtained J integrals are compared with the values obtained using a handbook solution. It is noted that J integrals obtained from the alternating method are close to the values from the handbook.

Winding Disposition to Minimize the Output Interference of Transformers for the High-Speed EMU (동력 분산형 고속철도용 변압기의 출력 간섭현상을 저감시키기 위한 권선 배치 방법)

  • Park, Byoung-Gun;Ahn, Sung-Kuk;Hyun, Dong-Seok
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1873-1877
    • /
    • 2010
  • In the high-speed EMU, the modularized traction converter produces the significant harmonic currents caused from the switching behavior of a power converter. These harmonic currents bring the interference among the traction equipment. One way to minimize the interference is to design the secondary windings of a power transformer decoupled magnetically as possible. This paper presents a magnetic field analysis on a winding disposition to clarify an impact on magnetic decoupling between secondary windings, under a limited height of a train. Two winding dispositions for a single-phase shell-type transformer are constructed and simulated by a three-dimensional finite elements method (FEM) model. Two different winding dispositions are constructed and simulated by three-dimensional FEM model using Maxwell3D.

  • PDF

3-Dimensional Finite Element Method Analysis of Blanking Die for Lead Frame (리드프레임의 전단용 금형에 대한 3차원 FEM 해석)

  • Choi, Man-Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.3
    • /
    • pp.61-65
    • /
    • 2011
  • The capabilities of finite elements codes allow now accurate simulations of blanking processes when appropriate materials modelling are used. Over the last decade, numerous numerical studies have focused on the influence of process parameters such as punch-die clearance, tools geometry and friction on blanking force and blank profile. In this study, three dimensional finite element analysis is carried out to design a lead frame blanking die using LS-Dyna3D package. After design of the blanking die, an experiment is also carried out to investigate the characteristics of blanking for nickel alloy Alloy42, a kind of IC lead frame material. In this paper, it has been researched the investigation to examine the influence of process parameters such as clearance and air cylinder pressure on the accuracy of sheared plane. Through the experiment results, it is shown that the quality of sheared plane is less affected by clearance and air cylinder pressure.