• Title/Summary/Keyword: Three Dimensional FEM Simulation

Search Result 85, Processing Time 0.035 seconds

A Study on the Design of Three-Dimensional Bending Machine (3차원 Bending Machine 설계에 관한 연구)

  • Lee, Choon-Man;Lim, Sang-Heon;Park, Dong-Keun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1852-1857
    • /
    • 2003
  • This study is concerned about the development of three-dimensional bending machine for heat exchanger. Recently, three-dimensional bending is required for various heat exchanger. The purpose of this study is design of three-dimensional bending machine by analysis of bending process and structural analysis simulation. The analysis is carried out by FEM simulation using DEFORM and CATIA V5 software. The copper-tube is modeled by shell elements and the machine is modeled by placing proper shell and solid finite elements and fictitious mass properties to represent the real one. The final results of analysis are applied to the design of three-dimensional bending machine and the machine is successfully developed.

  • PDF

A Study on the Design and Development of Three Dimensional Bending Machine (3차원 Bending Machine 설계 및 개발에 관한 연구)

  • 이춘만;임상헌;김현진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1448-1451
    • /
    • 2004
  • This study is concerned about the design and development of three dimensional bending machine. The purpose of this study is design and development of three-dimensional bending machine by analysis of bending process and structural analysis simulation. The analysis is carried out by FEM simulation using DEFORM and CATIA V5 software. Based on this study, the three dimensional bending machine was developed. In order to evaluate a performance and reliability of the developed three dimensional bending machine, we used laser interferometer and three axial measuring system.

  • PDF

Feasibility Study on Three-Dimensional Backward Tracing Scheme of Rigid-Plastic Finite Element Analysis (강-서성 유한요소 해석에서의 3차원 역추적 기법에 관한 연구)

  • 이진희;강범수;김병민
    • Transactions of Materials Processing
    • /
    • v.4 no.3
    • /
    • pp.267-281
    • /
    • 1995
  • Preform design is one of the critical fields in metal forming. The finite element method(FEM) has been effective in designing preforms and process sequence, for which the backward tracing scheme of the rigid-plastic FEM has been explored. In this work a program using the backward tracing scheme by the rigid-plastic FEM is developed for three-dimensional plastic deformation, which is an extension of the scheme from two-dimensional cases. The calculation of friction between workpiece and die, and handling of boundary conditions during backward tracing require sophisticated treatment. The developed program is applied to upsetting of a rectangular block and to side pressing of a cylindrical workpiece. The results of the two applications show feasibility of the program on three-dimensional plastic deformation.

  • PDF

Three Dimensional Adaptive Mesh Generator for Thermal Oxidation Simulation (열산화 공정 시뮬레이션을 위한 3차원 적응 메쉬 생성기 제작에 관한 연구)

  • 윤상호;이제희;윤광섭;원태영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.48-51
    • /
    • 1995
  • We have developed the three dimensional mesh generator for three dimensional process simulation using the FEM(Finite Element Method). Tetrahedron element construct the presented three dimensional mesh, which is suitable for the simulation of three dimensional behavior of the LOCOS. The simulation of thermal oxidation is one of the problem in scale downed semiconductor processes. As three dimensional simulators use the huge size of the memory, we use the efficient method that generates the new nodes inside the growing oxide and removes the nodes nearby the SiO2/Si interface in silicon. The resented three dimensional mesh generator was designed to be used in various process simulations, for instance thermal oxidation, silicidation, nitridation, ion implantation, diffusion, and so on.

  • PDF

Impact Behavior of Laminated Composite using Progressive Failure Model (단계적 파괴 모델에 의한 적층 복합재료의 충격거동 해석)

  • 강문수;이경우;강태진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.102-105
    • /
    • 2000
  • Recently, applications of integrated large composite structures have been attempted to many structures of vehicles. To improve the cost performance and reliability of the integrated composite structures, it is necessary to judge structural integrity of the composite structures. For the judgement, we need fracture simulation techniques for composite structures. Many researches oil the fracture simulation method using FEM have been reported by now. Most of the researches carried out simulations considering only matrix cracking and fiber breaking as fracture modes, and did not consider delamination. Several papers have reported the delamination simulation, but all these reports require three-dimensional elements or quasi three- dimensional elements for FEM analysis. Among fracture mechanisms of composite laminates, delamination is the most important factor because it causes stiffness degradation in composite structures. It is known that onset and propagation of delamination are dominated by the strain energy release rate and interfacial moment. In this study, laminated composite has been described by using 3 dimensional finite elements. Then impact behavior of the laminated composite is simulated using FEM(ABAQUS/Explicit) with progressive failure mechanism. These results are compared with experimental results.

  • PDF

A Study on the Development of a High Speed Feeding Type Three-Dimensional Bending Machine (초고속 이송 방식 3차원 Bending Machine 개발에 관한 연구)

  • Lim, Sang-Heon;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.91-98
    • /
    • 2005
  • This study has been focused on the development of a high speed feeding type three-dimensional bending machine. It is designed for manufacture of copper pipe for heat exchangers. For the purpose of design of the machine, analysis of bending process, structural analysis and reliability evaluation of the machine by a laser interferometer are carried out. The analysis is carried out by FEM simulation using commercial softwares, DEFORM, MARC and CATIA V5. In addition, the machine has attained high accuracy and repeatability. In order to improve the accuracy of this machine, the maximum speed, positioning accuracy and repeatability of feed are measured by the laser interferometer. The final results of analysis are applied to the design of a high speed feeding type three-dimensional bending machine and the machine is successfully developed.

Numerical analysis of three-dimensional sloshing flow using least-square and level-set method (최소자승법과 Level-set 방법을 이용한 3차원 슬로싱 유동의 수치해석)

  • Choi, Hyoung-Gwon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2401-2405
    • /
    • 2008
  • In the present study, a three-dimensional least square/level set based two-phase flow code was developed for the simulation of three-dimensional sloshing problems using finite element discretization. The present method can be utilized for the analysis of a free surface flow problem in a complex geometry due to the feature of FEM. Since the finite element method is employed for the spatial discretization of governing equations, an unstructured mesh can be naturally adopted for the level set simulation of a free surface flow without an additional load for the code development except that solution methods of the hyperbolic type redistancing and advection equations of the level set function should be devised in order to give a bounded solution on the unstructured mesh. From the numerical experiments of the present study, it is shown that the proposed method is both robust and accurate for the simulation of three-dimensional sloshing problems.

  • PDF

Upper-bound Finite Element Simulation Method (상계 유한요소 시뮬레이션 방법)

  • Lee, Chung-Ho
    • Transactions of Materials Processing
    • /
    • v.6 no.3
    • /
    • pp.233-238
    • /
    • 1997
  • The estimation of the forming force required for metal forming process is unavoidable for selecting suitable machine and dimensioning die and punch parts. For this purpose the upper-bound method turns out to be very practical in simple two-dimensional cases under well-known boundary conditions. However, the application of this method for complicated two-or three-dimentional cases is very limited or practically impossible. The modified application of FEM in a manner of applying the upper bound method(the so-called Upper-bound Finite Element Simulation Method) fortunately provides the posibility of getting important information about the forming process in a simple and quick way before realizing the process on the machine. It is expected to function successfully even in three-dimentional cases. The application procedure has been explained for two-dimensional cases and its usefulness shown.

  • PDF

Design and Manufacturing processes of Ti-6Al-4V profiled ring-products (Ti-6Al-4V 합금의 형상 링 압연공정 설계 및 제조기술)

  • Kim, K.J.;Kim, N.Y.;Lee, J.M.;Yeom, J.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.72-75
    • /
    • 2009
  • Design and Manufacturing processes of Ti-6Al-4V profiled ring-products were investigated with three-dimensional FEM simulation and experimental analyses. FEM simulation for the ring-rolling process was used to calculate the state variables such as strain, strain rate and temperature. In the simulation results of strain and temperature distributions for a plane ring rolling process, the strain level at the surface area is higher than that at the mid-plane, but the temperature level at the surface area is lower than that at mid-plane due to heat transfer between the workpiece and the work roll. These distributions showed a great influence on the evolution of microstructure in different positions. In order to induce the uniform deformation of the profile ring and reduce the applied load, the final blank was prepared by two-step processes. The mechanical properties of Ti-6Al-4V alloy ring products made in this work were investigated with tensile and impact tests and analyzed with the evolution of microstructures during the ring rolling process.

  • PDF

Comparative Study on Tensor and Vector Approaches for 3D-FEM Numerical Simulator

  • Cho, Sang-Young;Yang, Seung-Soo;Yoon, Hyoung-Jin;Won, Tae-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.517-519
    • /
    • 2007
  • We report our study on the implementation of Q tensor approach into three-dimensional finite element method (FEM) numerical solver. The comparative simulation results demonstrated the possibility of a different director configuration in between Q tensor method and vector method. The comparative study confirmed that Q Tensor implementation is more appropriate for OCB analysis than the vector method.

  • PDF