• Title/Summary/Keyword: Three Dimensional Crack

Search Result 258, Processing Time 0.031 seconds

Three-Dimensional Microstructural Modelling of Wear, Crack Initiation and Growth in Rail Steel

  • Fletcher, D.I.;Franklin, F.J.;Garnham, J.E.;Muyupa, E.;Papaelias, M.;Davis, C.L.;Kapoor, A.;Widiyarta, M.;Vasic, G.
    • International Journal of Railway
    • /
    • v.1 no.3
    • /
    • pp.106-112
    • /
    • 2008
  • Rolling-sliding, cyclic contact of wheel and rail progressively alters the microstructure of the contacting steels, eventually leading to micro-scale crack initiation, wear and macro-scale crack growth in the railhead. Relating the microstructural changes to subsequent wear and cracking is being accomplished through modelling at three spatial scales: (i) bulk material (ii) multi-grain and (iii) sub-grain. The models incorporate detailed information from metallurgical examinations of used rails and tested rail material. The initial 2-dimensional models representing the rail material are being further developed into 3-dimensional models. Modelling is taking account of thermal effects, and traffic patterns to which the rails are exposed.

  • PDF

The Probability Distribution of Fatigue Crack Propagation Life Considering Effect of Crack Coalescence (균열의 합체를 고려한 피로균열 진전수명의 확률분포)

  • Bang, Hong-In;Yun, Han-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1281-1287
    • /
    • 2000
  • The studies of probability distribution of the fatigue crack growth life have been somewhat reported. But the study on the probability distribution of the fatigue crack growth life considering the crack coalescence for three dimensional surface fatigue crack has apparently not been reported to date. In this study, the computer program has been developed to predict the probability distribution of the fatigue crack growth life considering the crack coalescence. The effects of parameters for the distribution of the fatigue crack propagation life were evaluated by using the program.

EVALUATION MODEL FOR RESTRAINT EFFECT OF PRESSURE INDUCED BENDING ON THE PLASTIC CRACK OPENING OF A CIRCUMFERENTIAL THROUGH-WALL CRACK

  • Kim, Jin-Weon
    • Nuclear Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.75-84
    • /
    • 2007
  • This paper presents a closed-form model for evaluating the restraint effect of pressure induced bending on the opening of a circumferential through-wall crack, which is considered plastic deformation behavior. Three-dimensional finite element analyses with different crack lengths, restraint conditions, pipe geometries, magnitudes of internal pressure, and tensile properties were used to investigate the influence of each parameter on the pressure-induced bending restraint on the crack opening displacement. From these investigations, an analytical model based on elastic-perfectly plastic material was developed in terms of the crack length, symmetric restraint length, mean radius to thickness ratio, axial stress corresponding to the internal pressure, and normalized crack opening displacement evaluated from a linear-elastic crack opening condition. Finite element analyses results demonstrate that the proposed analytical model reliably estimated the restraint effect of pressure-induced bending on the plastic crack opening of a circumferential through-wall crack and properly reflected the dependence on each parameter within the range over which the analytical expression was derived.

Finite element analysis of corner cracked aluminum panels repaired with bonded composite patch

  • Abdelkader Boulenouar;Mohammed A. Bouchelarm;Noureddine Benseddiq
    • Steel and Composite Structures
    • /
    • v.49 no.3
    • /
    • pp.271-280
    • /
    • 2023
  • In this study, the three-dimensional finite element method is used to analyze the behavior of corner cracks in finite-thickness plates repaired with a composite patch. The normalized stress intensity factor at the crack front is used as fracture criterion. Comparison of stress intensity factor values at the internal and external positions of repaired quarter-elliptical corner crack was done, for three repair techniques. The influence of mechanical and geometrical properties of the adhesive layer and the composite patch on the variation of the stress intensity factor (SIF) at the crack-front was highlighted. The obtained results show that the application of double patch leads to a remarkable reduction of SIF at the crack front, compared to facial and lateral repairs.

A Three-Dimensional Progressive Failure Model for Joints Considering Fracture Mechanics and Subcritical Crack Growth in Rock (암석파괴역학에 의한 3차원 절리면의 진행성 파괴 모델)

  • Kim, Chee-Hwan;Kemeny, John
    • Tunnel and Underground Space
    • /
    • v.19 no.2
    • /
    • pp.86-94
    • /
    • 2009
  • A three dimensional rock joint element was developed considering fracture mechanics and subcritical crack growth to simulate non-linear behavior and the progressive failure of rock joints. Using this 3-D joint element, joint shear tests of rock discontinuities were simulated by a numerical method. The asperities on the joint surface began to fail at stress levels lower than the rock fracture toughness and continued progressively due to subcritical crack growth. As a result of progressive failing in each and every asperity, the joint showed non-linear stress-time behavior including stress hardening/softening and the reaching of a residual stress.

Detection of a Crack in Beams by Eigen Value Analysis (고유치 해석을 이용한 보의 크랙 탐색)

  • Lee, Hee-Su;Lee, Ki-Hoon;Cho, Jae-Hoon
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.195-202
    • /
    • 2016
  • In this paper, crack detection method using eigen value analysis is presented. Three methods are used: theoretical analysis, finite element method with the cracked beam elements and finite element method with three dimensional continuum elements. Finite element formulation of the cracked beam element is introduced. Additional term about stress intensity factor based on fracture mechanics theory is added to flexibility matrix of original beam to model the crack. As using calculated stiffness matrix of cracked beam element and mass matrix, natural frequencies are calculated by eigen value analysis. In the case of using continuum elements, the natural frequencies could be calculated by using EDISON CASAD solver. Several cases of crack are simulated to obtain natural frequencies corresponding the crack. The surface of natural frequency is plotted as changing with crack location and depth. Inverse analysis method is used to find crack location and depth from the natural frequencies of experimental data, which are referred by another papers. Predicted results are similar with the true crack location and depth.

  • PDF

Evaluation Model for Restraint Effect of Pressure Induced Bending on the Circumferential Through-Wall Crack Opening Considering Plastic Behavior (소성거동을 고려한 원주방향 관통균열 열림에 미치는 압력유기굽힘의 구속효과 평가 모델)

  • Kim, Jin-Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.9 s.252
    • /
    • pp.1134-1141
    • /
    • 2006
  • This paper presents the model for evaluating restraint effect of pressure induced bending (PIB) on the circumferential through-wall crack opening displacement (COD), which considers plastic behavior of crack. This study performed three-dimensional elastic-plastic finite element (FE) analyses for different crack angle, restraint length, pipe geometry, stress level, and material conditions, and evaluated the influence of each parameter on the PIB restraint effect on COD. Based on these evaluations and additional perfectly-plastic FE analyses, a closed-form model to evaluate the restraint effect of PIB on the plastic crack opening of circumferential through-wall crack, was proposed as functions of crack angle, restraint length, radius to thickness ratio, axial stress corresponding to an internal pressure, and normalized COD evaluated from linear-elastic crack opening condition.

Examination and Improvement of Accuracy of Three-Dimensional Elastic Crack Solutions Obtained Using Finite Element Alternating Method (유한요소 교호법으로 구한 삼차원 균열 탄성해의 정확성 향상 및 검토)

  • Park, Jai-Hak;Nikishkov, G.P.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.629-635
    • /
    • 2010
  • An SGBEM (symmetric Galerkin boundary element method)-FEM alternating method has been proposed by Nikishkov, Park and Atluri. This method can be used to obtain mixed-mode stress intensity factors for planar and nonplanar three-dimensional cracks having an arbitrary shape. For field applications, however, it is necessary to verify the accuracy and consistency of this method. Therefore, in this study, we investigate the effects of several factors on the accuracy of the stress intensity factors obtained using the abovementioned alternating method. The obtained stress intensity factors are compared with the known values provided in handbooks, especially in the case of internal and external circumferential semi-elliptical surface cracks. The results show that the SGBEM-FEM alternating method yields accurate stress intensity factors for three-dimensional cracks, including internal and external circumferential surface cracks and that the method can be used as a robust crack analysis tool for solving field problems.

The Energy Release Rate of the Two Dimensional Cracked Body Under Thermal Stresses, Body Forces and Crack-Face Tractions (열응력, 내력 및 균열 경계하중을 고려한 2차원 균열문제의 에너지방출율)

  • 이태원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2172-2180
    • /
    • 1993
  • Under general loadings, including body forces, crack-face tractions and thermal loading, the energy release rate equation for a two-dimensional cracked body is presented. Defining the virtual crack extension as the variation of the geometry, the equation is directly derived by a shape design sensitivity of the potential energy. Although the form of the derived energy release rate equation is different from other researchers's results, the three example show that the former is exactly the same as the latter. However, the final integral equation do not involve the derivative of the displacement on the crack surface and crack tip region, thereby improving the numerical accuracy in the computation of the energy relase rate. Moreover, as it was derived from the governing equation including non-linear elasticity without special assumptions, the energy release rate of a elasto-plastic fracture can be obtained and any numerical stress analysis method can be applied.

Plastic Displacement Estimates in Creep Crack Growth Testing (크리프 균열 성장 실험을 위한 소성 변위 결정법)

  • Huh Nam-Su;Yoon Kee-Bong;Kim Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1219-1226
    • /
    • 2006
  • The ASTM test standard recommends the use of the compact tension specimen for creep crack growth rates measurement. In the creep crack growth rate test, the displacement rate due to creep is obtained by subtracting the contribution of elastic and plastic components from the total load line displacement rate based on displacement partitioning method fur determining $C^*-integral$, which involves Ramberg-Osgood (R-O) fitting procedures. This paper investigates the effect of the R-O fitting procedures on plastic displacement rate estimates in creep crack growth testing, via detailed two-dimensional and three-dimensional finite element analyses of the standard compact tension specimen. Four different R-O fitting procedures are considered; (i) fitting the entire true stress-strain data up to the ultimate tensile strength, (ii) fitting the true stress-strain data from 0.1% strain to 0.8 of the true ultimate strain, (iii) fitting the true stress-strain data only up to 5% strain, and (iv) fitting the engineering stress-strain data. It is found that the last two procedures provide reasonably accurate plastic displacement rates and thus should be recommended in creep crack growth testing. Moreover, several advantages of fitting the engineering stress-strain data over fitting the true stress-strain data only up to 5% strain are discussed.