• Title/Summary/Keyword: Three Dimensional

Search Result 14,724, Processing Time 0.043 seconds

Numerical analysis of 3-dimensional buoyant turbulent flow in a stairwell model with three different finite differencing schemes (유한차분 도식에 따른 건물 계단통에서의 3차원 부력 난류유동 수치해석)

  • Myong, H.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.1
    • /
    • pp.73-80
    • /
    • 1999
  • This paper describes a numerical study of three-dimensional buoyant turbulent flow in a stairwell model with three convective differencing schemes, which include the upwind differencing scheme, the hybrid scheme and QUICK scheme. The Reynolds-averaged Navier-Stokes and energy equations are solved with a two-equation turbulence model. The Boussinesq approximation is used to model buoyancy terms in the governing equations. Three-dimensional predictions of the velocity and temperature fields are presented and are compared with experimental data. Three-dimensional simulations with each scheme have predicted the overall features of the flow fairly satisfactorily. A better agreement with experimental is achieved with QUICK scheme.

  • PDF

Automatic Mesh Generation System for a Novel FEM Modeling Based on Fuzzy Theory (퍼지이론을 이용한 FEM 모델링을 위한 자동 요소분할 시스템)

  • Lee Yang-Chang;Lee Joon-Seong;Choi Yoon-Jong;Kim Nam-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.343-348
    • /
    • 2005
  • This paper describes an automatic finite element (FE) mesh generation for three-dimensional structures consisting of free-form surfaces. This mesh generation process consists of three subprocesses: (a) definition of geometric model, i.e. analysis model, (b) generation of nodes, and (c) generation of elements. One of commercial solid modelers is employed for three-dimensional solid structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay method is introduced as a basic tool for element generation. Automatic generation of FE meshes for three-dimensional solid structures holds great benefits for analyses. Practical performances of the present system are demonstrated through several mesh generations for three-dimensional complex geometry.

Automatic Mesh Generation System for a Novel FEM Modeling Based on Fuzzy Theory (퍼지이론을 이용한 FEM 모델링을 위한 자동 요소분할 시스템)

  • Lee Joon-Seong;Lee Yang-Chang;Choi Yoon-Jong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.139-142
    • /
    • 2005
  • This paper describes an automatic finite element (FE) mesh generation for three-dimensional structures consisting of free-form surfaces. This mesh generation process consists of three subprocesses: (a) definition of geometric model, i.e. analysis model, (b) generation of nodes, and (c) generation of elements. One of commercial sol id modelers is employed for three-dimensional sol id structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well control led by the fuzzy knowledge processing. The Delaunay method is introduced as a basic tool for element generation. Automatic generation of FE meshes for three-dimensional sol id structures holds great benefits for analyses. Practical performances of the present system are demonstrated through several mesh generations for three-dimensional complex geometry.

  • PDF

A Notation Method for Three Dimensional Hand Gesture

  • Choi, Eun-Jung;Kim, Hee-Jin;Chung, Min-K.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.4
    • /
    • pp.541-550
    • /
    • 2012
  • Objective: The aim of this study is to suggest a notation method for three-dimensional hand gesture. Background: To match intuitive gestures with commands of products, various studies have tried to derive gestures from users. In this case, various gestures for a command are derived due to various users' experience. Thus, organizing the gestures systematically and identifying similar pattern of them have become one of important issues. Method: Related studies about gesture taxonomy and notating sign language were investigated. Results: Through the literature review, a total of five elements of static gesture were selected, and a total of three forms of dynamic gesture were identified. Also temporal variability(reputation) was additionally selected. Conclusion: A notation method which follows a combination sequence of the gesture elements was suggested. Application: A notation method for three dimensional hand gestures might be used to describe and organize the user-defined gesture systematically.

Numerical analysis of three-dimensional sloshing flow using least-square and level-set method (최소자승법과 Level-set 방법을 이용한 3차원 슬로싱 유동의 수치해석)

  • Choi, Hyoung-Gwon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2401-2405
    • /
    • 2008
  • In the present study, a three-dimensional least square/level set based two-phase flow code was developed for the simulation of three-dimensional sloshing problems using finite element discretization. The present method can be utilized for the analysis of a free surface flow problem in a complex geometry due to the feature of FEM. Since the finite element method is employed for the spatial discretization of governing equations, an unstructured mesh can be naturally adopted for the level set simulation of a free surface flow without an additional load for the code development except that solution methods of the hyperbolic type redistancing and advection equations of the level set function should be devised in order to give a bounded solution on the unstructured mesh. From the numerical experiments of the present study, it is shown that the proposed method is both robust and accurate for the simulation of three-dimensional sloshing problems.

  • PDF

A study on the Theoretical of Three Dimensional Cutting Force Used Energy Method (에너지 방법을 이용한 삼차원 절삭력의 이론적 여측에 관한 연구)

  • Kim, Jang-Hvung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.1 no.3
    • /
    • pp.95-105
    • /
    • 1984
  • The purpose of this paper is to predict the cutting force, utilizing new model of double cutting edge which has normal rake angle and tool inclination angle. Changing side, back rake angle and side cutting edge angle in the new model. Three dimensional cutting force was obtained by the use of .eta. /c=i proposed by Stabler and energy method for three dimen- sional cutting force. Theoretical results has been calculated with development of optimization algorism which can be put into three dimensional theory, using the method of least square with orthogonal cutting data. IT is proved that three dimensional cutting force is to be predicted accurately only if orthogonal cutting force by equalizing theoretical result and experimental result has been calculated.

  • PDF

On exact wave propagation analysis of triclinic material using three-dimensional bi-Helmholtz gradient plate model

  • Karami, Behrouz;Janghorban, Maziar;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.69 no.5
    • /
    • pp.487-497
    • /
    • 2019
  • Rapid advances in the engineering applications can bring further areas to provide the opportunity to manipulate anisotropic structures for direct productivity in design of micro/nano-structures. For the first time, magnetic affected wave characteristics of nanosize plates made of anisotropic material is investigated via the three-dimensional bi-Helmholtz nonlocal strain gradient theory. Three small scale parameters are used to predict the size-dependent behavior of the nanoplates more accurately. After owing governing equations of wave motion, an analytical approach based harmonic series is utilized to fine the wave frequency as well as phase velocity. It is observed that the small scale parameters, magnetic field and wave number have considerable influence on the wave characteristics of anisotropic nanoplates. Due to the lack of any study on the mechanics of three-dimensional bi-Helmholtz gradient plates made of anisotropic materials, it is hoped that the present exact model may be used as a benchmark for future works of such nanostructures.

From Fragmented Development to Three-Dimensional and Coordinated Development - Research on Renewal Strategies of Existing Underground Commercial Space in Harbin

  • Xue, Minghui;Su, Yiming;Hu, Jiayu
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.1
    • /
    • pp.17-28
    • /
    • 2021
  • In Harbin, a network of underground commercial spaces has been developed to occupy spaces that were originally created as civil defense shelters. With the gradual extension of the local metro rail system, the existing underground commercial space is no longer an isolated regional development, but a space that represents "three-dimensional city" and coordinated development taking place in many Chinese cities. Based on the analysis of the unique development process taken in underground space of Harbin, this paper summarizes three characteristics of its early model of "fragmented development" of underground space. By conducting a comprehensive field research and survey, the researchers analyzed 472 questionnaires related to the development trend, and proposed multi-level synergistic elements for the renewal and development of underground commercial space. The paper concludes by discussing the trend of "three-dimensional and collaborative development," suitable for the development needs of the new era, and the corresponding development strategies for the renewal of underground space.

Research On The Relevance Between Mixed-use Complex and User Behaviour Based On Three-dimensional Spatial Analysis

  • Zhendong Wang;Yihan Pan;Yi Lu;Xihui Zhou
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.1
    • /
    • pp.83-91
    • /
    • 2023
  • Under the dual pressure of population growth and land shortage, threedimensional development is the inevitable choice for cities in China. In such a scenario, a mixed-use complex has considerable potential in its realization and research. Based on space syntax and the three-dimensional visibility graph analysis, this paper describes the spatial and functional layout of the Shanghai Super Brand Mall and studies the relationship between spatial visibility and user behaviour through linear regression analysis and correlation analysis. This paper studies three different types of user behaviour, namely, path selection, staying selection, and store selection, and finds that spatial visibility and accessibility have different effects on user behaviour depending on the type and purpose of the activity. This paper reveals the influence of spatial and functional layout on user behaviour and puts forward the corresponding design strategy under the three-dimensional environment.

A Study on Three-Dimensional Slope Stability Analysis (3-차원(次元) 사면안정(斜面安定) 해석(解析)에 관한 연구(硏究))

  • Kim, Yeong-Su
    • Journal of Industrial Technology
    • /
    • v.1
    • /
    • pp.17-25
    • /
    • 1981
  • Past research has concentrated on refining two-dimensional analysis techniques. Rather extensive comparisons of various two-dimensional methods have been made. This paper described a general three-dimensional method of analysis by which any geometrical condition and any c, phi soil can be analyzed. The results are as follows; 1. Factors of safety computed for 3-dimensional geometry differ considerably from ordinary 2-dimensional factors of safety. 2. 3-dimensional factors of safety are generally much higher than 2-dimensional factors of safety. However, situations appear to exist where the 3-dimensional factor of safety can be lower than the 2-dimensional factor of safety. 3. The F3/F2 ration appears to be quite sensitive to c, phi and to the slope.

  • PDF