• Title/Summary/Keyword: Three Body Dynamics

Search Result 145, Processing Time 0.03 seconds

Various Structural Approaches to Analyze an Aircraft with High Aspect Ratio Wings

  • El Arras, Anas;Chung, Chan Hoon;Na, Young-Ho;Shin, SangJoon;Jang, SeYong;Kim, SangYong;Cho, Changmin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.4
    • /
    • pp.446-457
    • /
    • 2012
  • Aeroelastic analysis of an aircraft with a high aspect ratio wing for medium altitude and long endurance capability was attempted in this paper. In order to achieve such an objective, various structural models were adopted. The traditional approach has been based on a one-dimensional Euler-Bernoulli beam model. The structural analysis results of the present beam model were compared with those by the three-dimensional NASTRAN finite element model. In it, a taper ratio of 0.5 was applied; it was comprised of 21 ribs and 3 spars, and included two control surfaces. The relevant unsteady aerodynamic forces were obtained by using ZAERO, which is based on the doublet lattice method that considers flow compressibility. To obtain the unsteady aerodynamic force, the structural mode shapes and natural frequencies were transferred to ZAERO. Two types of unsteady aerodynamic forces were considered. The first was the unsteady aerodynamic forces which were based on the one-dimensional beam shape; the other was based on the three-dimensional FEM model shape. These two types of aerodynamic forces were compared, and applied to the foregoing flutter analysis. The ultimate goal of the present research is to analyze the possible interaction between the rigid-body degrees of freedom and the aeroelastic modes. This will be achieved after the development of a reliable nonlinear beam formulation that would validate the current results as well as enable a thorough investigation of the nonlinearity. Moreover, such analysis will allow for an examination of the above-mentioned interaction between the flight dynamics and aeroelastic modes with the inclusion of the rigid body degrees of freedom.

Computational Analysis of the Delta Wing-Cylindrical Body Configuration Using the Three-Dimensional Patched-Grid Algorithm (3차원 patched-grid 알고리즘을 이용한 삼각 날개-원통형 동체 형상 전산 해석)

  • Park, Hyeon Don;Kim, Young Jin;Park, Soo Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.2
    • /
    • pp.109-117
    • /
    • 2020
  • A structured grid system can be efficiently constructed by applying the patched-grid algorithm that alleviates many constraints of the conventional structured grid system. Three approaches were applied to case 4 of the EFD-CFD workshop: delta wing-cylindrical body shape to solve the existing grid generation problems and verify the results by comparing them with experimental data. Surface pressure distributions slightly differed from the experimental data at high angles of attack. The slope variation of the pitching moment with Mach number is analyzed and the variation can be explained with the tuck under phenomenon. In the supersonic region, the bow shock waves in front of the shape expand the region generating lift up to the rear of the configuration. Also, the tendency of the pitching moment with both Mach number and angle of attack was analyzed by comparing the positions of the center of pressure and the center of gravity.

Aerodynamic Analysis Based on the Truncation Ratio of Guided-Weapon Nose Using CFD (전산유체역학을 이용한 유도무기 선두부 절단 비율에 대한 공력해석)

  • Jeong, Kiyeon;Kang, Dong-Gi;Lee, Daeyeon;Noh, Gyeongho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.4
    • /
    • pp.245-255
    • /
    • 2019
  • This paper describes on aerodynamic analysis based on the truncation rate of guided-weapon nose using computational fluid dynamics. The shape to perform the analysis is only the body of the guided weapon and the diameter to length ratio is 10.7. Three nose shapes were selected and hemisphere, 25% and 50% truncation were compared. For the accurate CFD analysis of the body, the grid method and the analytical method were selected and verified using NASA wind tunnel test data. For the three nose shapes, the drag analysis for the flight Mach number is 6~20% different. This difference was analyzed by the pressure distribution from nose to base.

Effect of Lifestyle Modification Program on Blood Pressure Improvement in Patients with Hypertension (고혈압 환자에서 생활습관 개선 프로그램의 혈압개선효과)

  • Lee, Sang-Uk;Oh, Chang-Mo;Oh, In-Hwan;Yoon, Tai-Young;Choi, Joong-Myung
    • Korean Journal of Health Education and Promotion
    • /
    • v.27 no.4
    • /
    • pp.105-112
    • /
    • 2010
  • Objectives: The purpose of this study was to know different effect with uncontrolled hypertension patients after providing health promotion program which consisted with medicine, exercise, nutrition. Methods: The subjects of this study was comprised by uncontrolled hypertension patients in spite of medication and didn't care the pressure by medication. The health promotion program was progressed by group exercise three times a week, nutrition education once a week and medical consultation once a month for 12 weeks. Subjects were measured for body composition(weight, fat mass, % body fat and body mass index), hemo-dynamics(systolic blood pressure(SBP), diastolic blood pressure(DBP), and resting heart rate), and physical fitness (cardiopulmonary endurance, muscular strength, muscular endurance, balance, and flexibility). Results: Groups showed significant improvement in every measure except resting heart rate. SBP is decreased both taking drug group about 18.4mmHg and without taking drug group about 19.4mmHg.(p<0.001) DBP is decreased both taking drug group about 8.7mmHg and without taking drug group about 9.0 mmHg.(p<0.001) Conclusion: There are no statistical significant differences of SBP and DBP decreasing effects by medication, Since effects of decreasing pressure are not different by medication, I think the health promotion program is effective to uncontrolled hypertension patients to decrease pressure.

EFFECT OF BASE FLOW AND TURBULENCE ON THE SEPARATION MOTION OF STRAP-ON ROCKET BOOSTERS (기저부 유동 및 난류가 다단 로켓의 단 분리 운동에 미치는 영향)

  • Ko, S.H.;Kim, J.K.;Han, S.H.;Kim, J.H.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.83-86
    • /
    • 2007
  • Turbulent flow analysis is conducted around the multi-stage launch vehicle including base region and detachment motion of strap-on boosters due to resultant aerodynamic forces and gravity is simulated. Aerodynamic solution procedure is coupled with rigid body dynamics for the prediction of separation behavior. An overset mesh technique is adopted to achieve maximum efficiency in simulating relative motion of bodies and various turbulence models are implemented on the flow solver to predict the aerodynamic forces accurately. At first, some preliminary studies are conducted to show the importance of base flow for the exact prediction of detachment motion and to find the most suitable turbulence model for the simulation of launch vehicle configurations. And then, developed solver is applied to the simulation of KSR-III, a three-stage sounding rocket researched in Korea. From the analyses, after-body flow field strongly affects the separation motions of strap-on boosters. Negative pitching moment at initial stage is gradually recovered and a strap-on finally results in a safe separation, while fore-body analysis shows collision phenomena between core rocket and booster. And a slight variation of motion is observed from the comparison between inviscid and turbulent analyses. Change of separation trajectory based on viscous effects is just a few percent and therefore, inviscid analysis is sufficient for the simulation of separation motion if the study is focused only on the movement of strap-ons.

  • PDF

Numerical Study on the Side-Wind Aerodynamic Forces of Chambered 3-D Thin-Plate Rigid-Body Model (캠버가 있는 3차원 박판 강체 모형의 측풍 공기력에 대한 수치 연구)

  • Shin, Jong-Hyeon;Chang, Se-Myong;Moon, Byung-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.2
    • /
    • pp.97-108
    • /
    • 2015
  • In the design of sailing yachts, para-glider, or high-sky wind power, etc., the analysis of side-wind aerodynamic forces exerted on a cambered 3-D model is very important to predict the performance of various machinery systems. To understand the essential flow physics around the three-dimensional shape, simplified rigid-body models are proposed in this study. Four parameters such as free stream velocity, angle of attack, aspect ratio, and camber are considered as the independent variables. Lift and drag coefficients are computed with CFD technique using ANSYS-CFX, and the results with the visualization of post-processed flow fields are analyzed in the viewpoint of fluid dynamics.

Nonlinear Analysis of Underwater Towed Cable Using Robust Nodal Position Finite Element Method (강건 절점위치 유한요소법을 이용한 수중 예인 케이블의 비선형 거동해석)

  • Lee, Euntaek;Go, Gwangsoo;Ahn, Hyung Taek;Kim, Seongil;Chun, Seung Yong;Kim, Jung Suk;Lee, Byeong Hee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.5
    • /
    • pp.388-399
    • /
    • 2016
  • A motion analysis of an underwater towed cable is a complex task due to its nonlinear nature of the problem. The major source of the nonlinearity of the underwater cable analysis is that the motion of the cable involves large rigid-body motion. This large rigid-body motion makes difficult to use standard displacement-based finite element method. In this paper, the authors apply recently developed nodal position-based finite element method which can deal with the geometric nonlinearity due to the large rigid-body motion. In order to enhance the stability of the large-scale nonlinear cable motion simulation, an efficient time-integration scheme is proposed, namely predictor/multi-corrector Newmark scheme. Three different predictors are introduced, and the best predictor in terms of stability and robustness for impulsive cable motion analysis is proposed. As a result, the nonlinear motion of underwater cable is predicted in a very efficient manner compared to the classical finite element of finite difference methods. The efficacy of the method is demonstrated with several test cases, involving static and dynamic motion of a single cable element, and also under water towed cable composed of multiple cable elements.

The Development and Evaluation of the Active Gait Training System for the Patients with Gait Disorder (보행 장애인을 위한 능동형 보행훈련 시스템 개발 및 평가)

  • Hwang, S.J.;Tae, K.S.;Kang, S.J.;Kim, J.Y.;Hwang, S.H.;Kim, H.I.;Park, S.W.;Kim, Y.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.218-228
    • /
    • 2007
  • Modem concepts of gait rehabilitation after stroke favor a task-specific repetitive approach. In practice, the required physical effort of the therapists limits the realization of this approach. Therefore, a mechanized gait trainer enabling nonambulatory patients to have the repetitive practice of a gait-like movement without overstraining therapists was constructed. In this study, we developed an active gait training system for patients with gait disorder. This system provides joint movements to patients who cannot carry out an independent gait. It provides a normal stance-swing ratio of 60:40 using an eccentric configuration of two gears. Joint motions of the knee and the ankle were evaluated with using the 3D motion analysis system and compared with the results from the multi-body dynamics simulation. In addition, clinical investigations were also performed for low stroke patients during the 6-week gait training. Results from the dynamics simulation showed that joint movements of the knee and the ankle were affected by the gear size, the step length and the length of the foot plate, except the radius of curvature of the foot guide plate. Also, the 6-week gait training revealed relevant improvements of the gait ability in all low subjects. Functional ambulation category levels of subjects after training were 2 in three patients and 1 in a patient. The developed active gait trainer seems feasible as an adjunctive tool in gait rehabilitation after stroke.

Methods for Measurement of Moment of Segmental Inertia Using a Dynamometer (동력계를 이용한 분절관성모멘트 측정 방법)

  • Son, J.;Kim, Y.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.156-162
    • /
    • 2013
  • Moments of inertia of limb segments are essential to calculate parameters related to the segmental rotation. To analyze the human motion accurately and specifically, moments of inertia obtained from the individual are required. In this study, a simple method to determine a subject-specific moment of segmental inertia using a dynamometer is introduced. In order to evaluate the method, one male participated to test for his forearm plus hand on a commercial dynamometer. Three passive speeds, i.e. 240, 270, and $300^{\circ}/s$, were chosen to confirm whether the moment of inertia values at each speed approach to a fixed value. The same procedure was repeated on the day after to evaluate whether the method is reproducible. As the results, there were no significant differences among the speeds and between the days. The value of the moment of the forearm inertia was 0.216 $kg{\cdot}m^2$ that is apparently higher compared to values by previous models. Nonetheless, it seems to be acceptable based on our body mass index analysis using reported subject height and mass in each previous study. According to our results, the developed method could be useful to determine the segmental moment of inertia of an individual, showing no significant differences among the speeds and between the days. Thus, we believe that our results are reliable according to two appropriate evaluation procedures. This finding would be helpful to calculate segmental rotation related parameters of an individual.

Effect of lateral differential settlement of high-speed railway subgrade on dynamic response of vehicle-track coupling systems

  • Zhang, Keping;Zhang, Xiaohui;Zhou, Shunhua
    • Structural Engineering and Mechanics
    • /
    • v.80 no.5
    • /
    • pp.491-501
    • /
    • 2021
  • A difference in subgrade settlement between two rails of a track manifests as lateral differential subgrade settlement. This settlement causes unsteadiness in the motion of trains passing through the corresponding area. To illustrate the effect of lateral differential subgrade settlement on the dynamic response of a vehicle-track coupling system, a three-dimensional vehicle-track-subgrade coupling model was formulated by combining the vehicle-track dynamics theory and the finite element method. The wheel/rail force, car body acceleration, and derailment factor are chosen as evaluation indices of the system dynamic response. The effects of the amplitude and wavelength of lateral differential subgrade settlement as well as the driving speed of the vehicle are analyzed. The study reveals the following: The dynamic responses of the vehicle-track system generally increase linearly with the driving speed when the train passes through a lateral subgrade settlement area. The wheel/rail force acting on a rail with a large settlement exceeds that on a rail with a small settlement. The dynamic responses of the vehicle-track system increase with the amplitude of the lateral differential subgrade settlement. For a 250-km/h train speed, the proposed maximum amplitude for a lateral differential settlement with a wavelength of 20 m is 10 mm. The dynamic responses of the vehicle-track system decrease with an increase in the wavelength of the lateral differential subgrade settlement. To achieve a good operation quality of a train at a 250-km/h driving speed, the wavelength of a lateral differential subgrade settlement with an amplitude of 20 mm should not be less than 15 m. Monitoring lateral differential settlements should be given more emphasis in routine high-speed railway maintenance and repairs.