DOI QR코드

DOI QR Code

Aerodynamic Analysis Based on the Truncation Ratio of Guided-Weapon Nose Using CFD

전산유체역학을 이용한 유도무기 선두부 절단 비율에 대한 공력해석

  • Received : 2019.02.12
  • Accepted : 2019.03.28
  • Published : 2019.04.01

Abstract

This paper describes on aerodynamic analysis based on the truncation rate of guided-weapon nose using computational fluid dynamics. The shape to perform the analysis is only the body of the guided weapon and the diameter to length ratio is 10.7. Three nose shapes were selected and hemisphere, 25% and 50% truncation were compared. For the accurate CFD analysis of the body, the grid method and the analytical method were selected and verified using NASA wind tunnel test data. For the three nose shapes, the drag analysis for the flight Mach number is 6~20% different. This difference was analyzed by the pressure distribution from nose to base.

본 논문에서는 유도무기의 선두부 형상 절단 비율에 따라서 달라지는 공력특성에 대해 전산유체역학을 이용하여 분석하였다. 해석을 수행하는 형상은 유도무기 동체만 있으며 직경대 길이비는 10.7이다. 선두부 형상은 세 가지를 선택했으며 구형, 25% 절단, 50% 절단형을 비교하였다. 유도무기 동체의 정확한 해석을 위해서 NASA의 풍동시험 데이터를 이용하여 격자 구성법과 해석 기법을 선택하고 검증하였다. 선두부 세 가지 형상에 대해서 비행마하수에 대해 항력을 분석한 결과 절단과 구형이 6~20% 정도 차이 났으며, 동체의 선두부와 기저부의 압력분포를 통해 특성을 분석하였다.

Keywords

References

  1. Edward, W. P., Leland, H. J., and Simon, C. S., "Investigation of the drag of various axially symmetric nose shapes of fineness ratio 3 for Mach numbers from 1.24 to 7.4," NACA-Report 1386, 1958, pp.1231-1247.
  2. Rosema, C., and David, R., "Aerodynamic Assessment of Several Blunt Body Configurations," AIAA 2009-910, 2009.
  3. Seiff, A., "A Free-Flight Wind Tunnel for Aerodynamic Testing at Hypersonic Speeds," Report 1222, 1955, pp.1-17.
  4. Eggers, J. R., Meyer, M. R., and David, H. D., "Bodies of Revolution having Minimum Drag at High Supersonic Airspeeds," NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON DC, No. NACA-TN-3666, 1956, pp.1-38.
  5. Oh, S. M., and Yoon, S. J., "CFD Optimization of Supersonic Minimum Drag Forebody," Korean Society of Computational Fluids Engineering, Oct. 1995, pp.154-159.
  6. Nguyen, N. V., Tyan, M., Lee, J. W., and Byun, Y. H., "Investigation on Missile Configuration Aerodynamic Characteristics for Design Optimization," Transactions of the Japan Society for Aeronautical and Space Sciences, Vol. 57, No. 4, 2014, pp.210-218. https://doi.org/10.2322/tjsass.57.210
  7. Kang, K. T., Baik, Y. S., and Lee, K. S., "Numerical Investigation of the Drag of Blunted Nose Shapes at Transonic Speed," Korean Society of Computational Fluids Engineering, Oct. 2013, pp.9-11.
  8. Jang, J. Y., and Ryu, G. H., "Numerical Study for Drag Difference of Vehicle's Nose in the Supersonic Turbulent Flow," Korean Society of Computational Fluids Engineering, Oct. 2015, pp.22-23.
  9. Kim, Y. H., Kang, E. G., and Ahn, H. K., "Computation of Aerodynamic Characteristics of Missile Body using Semi-Empirical and CFD Method," Korean Society of Computational Fluids Engineering, May. 2015, pp.17-18.
  10. Menter, F. R., "Two-equation Eddy-viscosity Turbulence Modeling for Engineering Application," AIAA Journal, Vol. 32, No. 8, 1994, pp.1598-1605. https://doi.org/10.2514/3.12149
  11. Moore, F. G., Floyd, W., and Tom, H., "Improved Empirical Model for Base Drag Prediction on Missile Configurations Based on New Wind Tunnel Data," NAVAL SURFACE WARFARE CENTER DAHLGREN DIV VA, No. NSWCDD/TR-92/509, 1992.