• Title/Summary/Keyword: Thin-plate structure

Search Result 209, Processing Time 0.027 seconds

A Study on the Inner Temperature Behaviors in the Casting Process for the Development of the Automatic Parts (자동차 부품 소재 개발에 따른 캐스팅 과정의 부품 내부온도 거동에 관한 연구)

  • Cha Young-Hoon;Sung Back-Sub;Jang Hoon;Kim Mi-Ai;Kim Jung-Dae;Kim Sun-Jun;Kim Duck-Joong;Lee Youn-Sin
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.279-284
    • /
    • 2005
  • The casting defects that are caused by molten metal were cold shut formation, entrapment of air, gas, and inclusion. But the control of casting defects has been based on the experience of the foundry engineers. In this thesis, the computer simulation analyzed the flow of molten metal. The quantitative analyses which proposed the effective mold design was executed Flow patterns of 0.15-0.16m/s molten metal in 15 mm thin plate casting were investigated in order to optimize die-casting process. As increasing ingate velocity in thin plate casting, cold shot was decreased. The parameters of runner shape that affected on the optimized conditions that was calculated with simple equation were investigated. These die casting process control techniques of automobile valve body mid-plate have achieved good agreement with the experimental data of tensile strength, hardness test, and material structure photographies satisfactory results.

  • PDF

Welding Distortion Characteristics of Door Openings According to Changing Shape of Stiffener (Door Opening부의 보강재 형상변화에 따른 용접 변형 특성)

  • Lee, Dong-Hun;Seo, Jung-Kwan;Yi, Myung-Su;Hyun, Chung-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.153-160
    • /
    • 2019
  • Welding often results in welding distortion during the assembly process. The welding distortion of thin-plate structures such as the living quarters of ships and offshore installations is a more significant problem than in the case of thick-plate structures. Pre-stressing/heating and fairing, which are additional works to mitigate and control welding distortion, are inevitable, and the construction planning is accordingly delayed. In order to prevent welding distortion and minimize the additional work during the assembly process, increasing the plate thickness and/or the number of stiffeners may be a simple solution, but it may give rise to problems related to cost and weight. In this study, the welding distortion control effect of the type of stiffeners on the door openings of various living quarter structures was investigated using an experimental method and a finite element method. The results showed the feasibility of mitigating and controlling the welding distortion, and the optimum selection of the type of stiffeners was confirmed.

Properties of the metallic glass thin films fabricated by multicomponent single alloying target and its applications in various industrial fields

  • Shin, S.Y.;Moon, K.I.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.77-77
    • /
    • 2015
  • Metallic glass alloys having dense packing structure have short range ordered structure with long range homogeneity. Therefore, they can provide complete corrosion protection and unique electrical properties. Recently, metallic glass thin films have received much attention to extend its application fields combining with PVC coating technologies. The metallic glass thin films can change the surface properties of the conventional bulk materials which need anticorrosion properties. However, multi-component alloying targets are required to fabricate the metallic glass thin films because metallic glass alloys contain more than three elements. Recently, many researchers have been reported the properties of the metallic glass thin films synthesized with multi-cathode systems or amorphous target. But, it is difficult to fabricate the large sized sputtering targets for mass production equipment with high toughness and thermal stability. In this study, newly developed sputtering target with glass forming ability and the properties of the metallic glass thin films will be introduced with respect to the various application fields such as bipolar plate in PEM fuel cell and decorative coatings for electric device and construction fields.

  • PDF

Deflection of a Thin Solid Structure by a Thermal Bubble (열 기포에 의한 고체 박막의 변형 해석)

  • Kim, Ho-Young;Lee, Yoon-Pyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.2
    • /
    • pp.236-242
    • /
    • 2003
  • Thermal bubbles find their diverse application areas in the MEMS (MicroElectroMechanial Systems) technology, including bubble jet printers, microactuators, micropumps, etc.. Especially, microactuators and micropumps, which use a microbubble growing by a controlled heat input, frequently involve mechanical and thermal interaction of the bubble with a solid structure, such as a cantilever beam and a membrane. Although the concept is experimentally verified that an internal pressure of the bubble can build up high enough to deflect a thin solid plate or a beam, the physics of the entire process have not yet been thoroughly explored. This work reports the experimental study of the growth of a thermal bubble while deflecting a thin cantilever beam. A physical model is presented to predict the elastic response of the cantilever beam based on the experimental measurements. The scaling law constructed through this work can provide a design guide for micro- and nano-systems that employ a thermal bubble for their actuation/pumping mechanism.

Secondary Buckling Behaviour of Plate under Inpane Compressive Loading (면내압축하중(面內壓縮荷重)을 받는 판(板)의 2차좌굴거동(次座屈擧動)에 관한 연구(硏究))

  • J.Y. Ko;T. Yao;J.K. Paik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.3
    • /
    • pp.66-80
    • /
    • 1996
  • Recently, HT steel has been widely used in structure, and this enables to reduce the plate thickness. To use the HT steel effectively for a ship hull, the plate thickness becomes thin so that plate buckling may take place. Therefore, precise assessment of the behaviour of plat above primary buckling load is important. The plate under the load, that is called, secondary buckling load may undergo abrupt changes in wave form after primary buckling. This is very important when the collapse strength of the whole structures is considered. From this point of view, this paper discusses secondary buckling behaviour of thin plate under inplane compressive loading. A elastic large deflection analysis of plates with initial imperfection is performed assuming uniaxial compression, respectively, and the influence of secondary buckling is investigated. It is known that square plate is not influenced by non-symmetrical deflection coefficient but influenced by symmetrical deflection coefficient. Also, it has been found that rectangular plate($\alpha$=a/b) is influenced by all deflection coefficient, and the reduction of inplane stiffness of the plate after primary buckling is continued.

  • PDF

Damage detection of a thin plate using pseudo local flexibility method

  • Hsu, Ting Yu;Liu, Chao Lun
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.463-471
    • /
    • 2018
  • The virtual forces of the original local flexibility method are restricted to inducing stress on the local parts of a structure. To circumvent this restriction, we developed a pseudo local flexibility (PLFM) method that can successfully detect damage to hyperstatic beam structures using fewer modes. For this study, we further developed the PLFM so that it could detect damage in plate structures. We also devised the theoretical background for the PLFM with non-local virtual forces for plate structures, and both the lateral and rotary degree of freedom (DOF) measurements were considered separately. This study investigates the effects of the number of modes, the actual location that sustained damage, multiple damage locations, and noise in modal parameters for the damage detection results obtained from damaged numerical plates. The results revealed that the PLFM can be used for damage detection, localization, and quantification for plate structures, regardless of the use of the lateral DOF and/or rotary DOF.

Wave Transmission Analysis of Beam/Plate Point-Coupled Structures (보/평판 점연성구조의 파동전달해석)

  • 서성훈;홍석윤;길현권
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.457-467
    • /
    • 2004
  • Wave Transmission analysis is one of methods for power transmission and reflection coefficients in coupled infinite structures. This paper focuses the wave transmission analysis of point coupled structures among semi-infinite beams and infinite thin plates considering all kinds of waves. It is supposed that the junction through the beams and plates is an identical spot and no point of contact exist except the spot. The boundary conditions are applied at the spot for continuities of 6 DOF displacements and 6 DOF force equilibriums, and then wave fields are obtained in the coupled structures. Since wave components in plate field are simplified using asymptotic expressions of Henkel functions, the displacements and forces at the plate junction can be simply expressed with magnitudes of the wave components. The wave fields according to incident waves gives the power transmission coefficients in beam/plate point coupled structures. For both coupled structures with a beam vertically and obliquely joined to a plate, power transmission analysis is performed and the analysis results are compared and examined.

  • PDF

Crack detection in rectangular plate by electromechanical impedance method: modeling and experiment

  • Rajabi, Mehdi;Shamshirsaz, Mahnaz;Naraghi, Mahyar
    • Smart Structures and Systems
    • /
    • v.19 no.4
    • /
    • pp.361-369
    • /
    • 2017
  • Electromechanical impedance method as an efficient tool in Structural Health Monitoring (SHM) utilizes the electromechanical impedance of piezoelectric materials which is directly related to the mechanical impedance of the host structure and will be affected by damages. In this paper, electromechanical impedance of piezoelectric patches attached to simply support rectangular plate is determined theoretically and experimentally in order to detect damage. A pairs of piezoelectric wafer active sensor (PWAS) patches are used on top and bottom of an aluminum plate to generate pure bending. The analytical model and experiments are carried out both for undamaged and damaged plates. To validate theoretical models, the electromechanical impedances of PWAS for undamaged and damaged plate using theoretical models are compared with those obtained experimentally. Both theoretical and experimental results demonstrate that by crack generation and intensifying this crack, natural frequency of structure decreases. Finally, in order to evaluate damage severity, damage metrics such as Root Mean Square Deviation (RMSD), Mean Absolute Percentage Deviation (MAPD), and Correlation Coefficient Deviation (CCD) are used based on experimental results. The results show that generation of crack and crack depth increasing can be detectable by CCD.

Study on the splitting failure of the surrounding rock of underground caverns

  • Li, Xiaojing;Chen, Han-Mei;Sun, Yanbo;Zhou, Rongxin;Wang, Lige
    • Geomechanics and Engineering
    • /
    • v.14 no.5
    • /
    • pp.499-507
    • /
    • 2018
  • In this paper splitting failure on rock pillars among the underground caverns has been studied. The damaged structure is considered to be thin plates and then the failure mechanism of rock pillars has been studied consequently. The critical load of buckling failure of the rock plate has also been obtained. Furthermore, with a combination of the basic energy dissipation principle, generalized formulas in estimating the number of splitting cracks and in predicting the maximum deflection of thin plate have been proposed. The splitting criterion and the mechanical model proposed in this paper are finally verified with numerical calculations in FLAC 3D.