• Title/Summary/Keyword: Thin-film technology

Search Result 2,959, Processing Time 0.034 seconds

A study on the Poly-$Si_{1-x}Ge_x$ thin film deposition(II) Variation of surface roughness, grain size and electrical property with deposition parameters (다결정 $Si_{1-x}Ge_x$박막 증착에 관한 연구(II) 증착변수에 따른 표면거칠기, 결정립크기 및 전기적성질 변화)

  • 이승호;어경훈;소명기
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.1
    • /
    • pp.64-72
    • /
    • 1998
  • In this work, we have investigated the change of surface roughness, grain size and crystallinity of Poly-$Si_{1-x}Ge_x$ films deposited with the variation of deposition parameters (temperature, pressure, Ge composition ) and the effect of these results on the electrical resistivity. The crystallinity and the grain size were increased with increasing deposition temperature and Ge composition. Also, the electrical resistivity was decreased by enhanced grain size, while the surface roughness was increased. With increasing deposition pressure, the crystallinity was increased, but the grain size and the cluster size were decreased, by which the surface roughness was decreased. And the electrical resistivity was increased. Based on the effect of the crystallinity and the grain size on the electrical resistivity, it was founded that the electrical resistivity was depend on the grain size rather than the crystallinity.

  • PDF

Fabrication of the pyramid-type silicon tunneling devices for displacement sensor applications (변위센서응용을 위한 피라미드형 실리콘 턴널링소자의 제조)

  • Ma, Tae-Young;Park, Ki-Cheol;Kim, Jeong-Gyoo
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.177-181
    • /
    • 2000
  • The tunneling current is exponentially dependent on the separation gap between a pair of conductors. The detection of displacement can be, therefore, carried out by measurment of a variation in the tunneling current. In this experiment, we fabricated pyramid-type silicon tunneling devices in which a tunneling current flow between a micro-tip and $Si_3N_4$ thin film membrane. A MEMS process was used for the fabrication of the tunneling devices. The micro-tips were formed on Si wafers by undercutting a differently oriented square of $SiO_2$ with KOH. The stiffness of the $Si_3N_4$ films were observed and the model for the stiffness calculation, which is useful in predicting the stiffness even when the stiffness ranges beyond the scope of the normal experimental condition, was suggested.

  • PDF

Bond Strength of TiO2 Coatings onto FTO Glass for a Dye-sensitized Solar Cell

  • Lee, Deuk Yong;Kim, Jin-Tae;Kim, Young-Hun;Lee, In-Kyu;Lee, Myung-Hyun;Kim, Bae-Yeon
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.395-401
    • /
    • 2012
  • The bond strength of three types of $TiO_2$ coatings onto fluorine-doped $SnO_2$ (FTO) glass was investigated with the aid of a tape test according to ASTM D 3359-95. Transmittance was then measured using an UV-vis spectrophotometer in the wavelength range of 300 nm to 800 nm to evaluate the extent of adhesion of $TiO_2$ nanorods/nanoparticles on FTO glass. A sharp interface between the coating layer and the substrate was observed for single $TiO_2$ coating ($TiO_2$ nanorods/FTO glass), which may be detrimental to the bonding strength. In multicoating sample ($TiO_2$ nanorod/$TiO_2$ nanoparticle/$TiO_2$ nanoparticle/FTO glass), the tape test was not performed due to severe peeling-off prior to the test. On the other hand, the dual coating sample ($TiO_2$ nanorod/$TiO_2$ nanoparticle/FTO glass) showed minimum variation of transmittance (4%) after the test, suggesting that the topcoat adheres well with the FTO substrate due to the presence of the $TiO_2$ nanoparticle buffer layer. The use of a $TiO_2$ nanorod electrode layer with good adhesion may be attributed to the excellent dye sensitized solar cell performance.

Physical and Microwave Dielectric Properties of the MgO-SiO2 System

  • Yeon, Deuk-Ho;Han, Chan-Su;Key, Sung-Hoon;Kim, Hyo-Eun;Kang, Jong-Yun;Cho, Yong-Soo
    • Korean Journal of Materials Research
    • /
    • v.19 no.10
    • /
    • pp.550-554
    • /
    • 2009
  • Unreported dielectrics based on the binary system of MgO-SiO$_2$ were investigated as potential candidates for microwave dielectric applications, particularly those demanding a high fired density and high quality factors. Extensive dielectric compositions having different molar ratios of MgO to SiO$_2$, such as 2:1, 3:1, 4:1, and 5:1, were prepared by conventional solid state reactions between MgO and SiO$_2$. 1 mol% of V$_2$O$_5$ was added to aid sintering for improved densification. The dielectric compositions were found to consist of two distinguishable phases of Mg$_2$SiO$_4$ and MgO beyond the 2:1 compositional ratio, which determined the final physical and dielectric properties of the corresponding composite samples. The increase of the ratio of MgO to SiO$_2$ tended to improve fired density and quality factor (Q) without increasing grain size. As a promising composition, the 5MgO.SiO$_2$ sample sintered at 1400 $^{\circ}C$ exhibited a low dielectric constant of 7.9 and a high Q $\times$ f (frequency) value of $\sim$99,600 at 13.7 GHz.

Effect of the Thickness and the Annealing Conditions of the Catalytic Ni Films on the Graphene Films Grown by a Rapid-Thermal Pulse CVD (Rapid-Thermal Pulse 화학증착법에 의해 증착된 그래핀 박막에서 촉매금속 Ni의 두께 및 열처리 조건의 영향)

  • Na, Sin-Hye;Yoon, Soon-Gil
    • Korean Journal of Materials Research
    • /
    • v.21 no.2
    • /
    • pp.78-82
    • /
    • 2011
  • Mono- and few-layer graphenes were grown on Ni thin films by rapid-thermal pulse chemical vapor deposition technique. In the growth steps, the exposure step for 60 s in $H_2$ (a flow rate of 10 sccm (standard cubic centimeters per minute)) atmosphere after graphene growth was specially established to improve the quality of the graphenes. The graphene films grown by exposure alone without $H_2$ showed an intensity ratio of $I_G/I_{2D}$ = 0.47, compared with a value of 0.38 in the films grown by exposure in H2 ambient. The quality of the graphenes can be improved by exposure for 60 s in $H_2$ ambient after the growth of the graphene films. The physical properties of the graphene films were investigated for the graphene films grown on various Ni film thicknesses and on 260-nm thick Ni films annealed at 500 and $700^{\circ}C$. The graphene films grown on 260-nm thick Ni films at $900^{\circ}C$ showed the lowest $I_G/I_{2D}$ ratio, resulting in the fewest layers. The graphene films grown on Ni films annealed at $700^{\circ}C$ for 2 h showed a decrease of the number of layers. The graphene films were dependent on the thickness and the grain size of the Ni films.

Development of Target-Specific Drug Delivery Systems Using Glycosylated Proliposome I-Binding of Asialofetuin-Labeled Liposomes to Lectin RCA- (표면수식된 프로리포솜에 의한 표적부위 지향성 약물수송체의 개발 I-갈락토스 당쇄로 표면수식된 리포솜의 간세포 렉틴 결합성-)

  • Shim, Chang-Koo;Lee, Chang-Yong;Kim, Chong-Kook
    • Journal of Pharmaceutical Investigation
    • /
    • v.22 no.2
    • /
    • pp.155-161
    • /
    • 1992
  • Although glycosylated liposomes have attracted much attention as targeting delivery systems (DDS) of drugs to specific organs which have glycoside receptors, physical instability of liposomes greatly limits their practical application. In this case, proliposomes might be a potential answer to solve this problem. Utilizing the proliposomes as tageting DDS has been a goal of our series of works; we have tried to develop DDS which form liposomes uppon adding water and can deliver drugs to specific target organs/cells such as hepatocytes. In this paper, preparation of glycosylated liposomes and binding of the liposomes with lectin (agglutinin RCA 120) was studied. Asialoletuin (AF) was selected as a model compound which has galactose terminal and is favorable for binding with galactose receptor on the surface of hepatocytes. AF was obtained by splitting the terminal N-acetylneuraminic acid (NANA) of fetuin. Small unilamellar AF-liposomes were prepared by mixing aqueous solution of AF-palmitate with thin film of phosphatidyl choline and cholesterol (30:10 w/w) formed on the innersurface of the round bottomed flask. They were successively extruded through polycarbonate membranes (0.45 mm). Palmitoyl-AF not incorporated into the liposomal bilayer was separated from liposomes by a Sepharose 4B column equilibrated with 10 mM Tris-HCI buffered saline. Lectin (agglutinin RCA 120) was added to the suspension of AF-liposomes and incubated at $37^{\circ}C$ for 2 hr. After centrifugation, the unbound lectin in the supernatant was assayed for protein. The binding of the lectin to AF-liposomes (AF content 2.8 nmole) at $37^{\circ}C$ was linear at least upto 35 mg of lectin indicating high affinity association of the lectin to AF molecules of the liposomes.

  • PDF

Electrostatically-Driven Polysilicon Probe Array with High-Aspect-Ratio Tip for an Application to Probe-Based Data Storage (초소형 고밀도 정보저장장치를 위한 고종횡비의 팁을 갖는 정전 구동형 폴리 실리콘 프로브 어레이 개발)

  • Jeon Jong-Up;Lee Chang-Soo;Choi Jae-Joon;Min Dong-Ki;Jeon Dong-Ryeol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.166-173
    • /
    • 2006
  • In this study, a probe array has been developed for use in a data storage device that is based on scanning probe microscope (SPM) and MEMS technology. When recording data bits by poling the PZT thin layer and reading them by sensing its piezoresponse, commercial probes of which the tip heights are typically shorter than $3{\mu}m$ raise a problem due to the electrostatic forces occurring between the probe body and the bottom electrode of a medium. In order to reduce this undesirable effect, a poly-silicon probe with a high aspect-ratio tip was fabricated using a molding technique. Poly-silicon probes fabricated by the molding technique have several features. The tip can be protected during the subsequent fabrication processes and have a high aspect ratio. The tip radius can be as small as 15 nm because sharpening oxidation process is allowed. To drive the probe, electrostatic actuation mechanism was employed since the fabrication process and driving/sensing circuit is very simple. The natural frequency and DC sensitivity of a fabricated probe were measured to be 18.75 kHz and 16.7 nm/V, respectively. The step response characteristic was investigated as well. Overshoot behavior in the probe movement was hardly observed because of large squeeze film air damping forces. Therefore, the probe fabricated in this study is considered to be very useful in probe-based data storages since it can stably approach toward the medium and be more robust against external shock.

The Study on the Current Limiting Characteristics of YBCO Coated Conductor with Different kinds of Stabilization Layer Applied to SFCL Using Iron Core and Coil (철심과 권선을 이용한 전류제한기에 적용시킨 안정화층이 다른 YBCO Coated Conductor의 전류제한 특성에 관한 연구)

  • Lee, Dong-Heok;Du, Ho-Ik;Kim, Yong-Jin;Han, Byoung-Sung;Yim, Seong-Woo;Han, Sang-Chul;Lee, Jeong-Phil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.10
    • /
    • pp.788-792
    • /
    • 2010
  • The yttrium-barium-copper-oxide (YBCO) coated conductor, which supplement the fault of the existing superconducting current-limit materials YBCO thin film, bismuth-strontium-calcium-copper-oxide(BSCCO) wire and bulk, has been improved its mechanical weakness and has high index; hence, after quench YBCO coated conductor could limit the fault current effectively because of fast resistance occurrence speed. Furthermore, it has wide applicable area as an current limit material because it shows different resistance occurrence tendency by the thickness and kind of stabilization material sputtered on the superconducting layer. Therefore, many researchers are carrying out the study of application of YBCO coated conductor to superconducting fault current limiter (SFCL) for making high quality current limit element, based on resistance type. On the other hand, the study for other type except resistance type has been rarely conducted for the application of YBCO coated conductor to SFCL as an current limit element. Consequently, in this study, YBCO coated conductor with different stabilization layer Cu and Stainless steel, is applied to SFCL using iron core and coil, and examine the many index points as an current limit element, such as current limit characteristic, the tendency of resistance occurrence, response time, the temperature trend for stability.

Prediction of Spectral Phonon Mean Free Path Contribution to Thermal Conduction in Silicon Using Phonon Kinetic Theory (포논 기체 운동론을 이용한 실리콘 내 포논 평균자유행로 스펙트럼 열전도율 기여도 예측)

  • Jin, Jae Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.5
    • /
    • pp.341-346
    • /
    • 2017
  • Knowing the mean free paths (MFPs) of thermal phonons is an essential step in performing heat transfer analysis for nanomaterials, and in determining the optimum design for tailoring the heat transfer characteristics of nanomaterials. In this study, we present a method that can be used to calculate accurately the phonon MFP spectra of nanostructures based on simple phonon kinetic theory. Here, the kinetic theory may be employed by extracting only the diffusive-transport part of the phonon spectrum (i.e., the MFPs are less than a thermal length). By considering phonon dispersion and polarization effects, the phonon MFP distributions of silicon at room temperature are calculated from phonon transport properties and the spectral MFP. Our results are validated by comparison with those of the first principle and MFP spectroscopy data.

Control of Metal-Oxide Nanostructures for $H_{2}-Alcohol$ Fuel Cells (수소-알코올연료전지를 위한 금속-산화물 나노구조제어)

  • Park, Kyung-Won;Song, You-Jung;han, Sang-Beom;Lee, Jong-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.141-145
    • /
    • 2007
  • Due to their excellent catalytic activity with respect to methanol oxidation on platinum at low temperature, platinum nanosized catalysts have been a topic of great interest for use in direct methanol fuel cells (DMFCs). Since pure platinum is readily poisoned by CO, a by-product of methanol electrooxidation, and is extremely expensive, a number of efforts to design and characterize Pt-based alloy nanosized catalysts or Pt nanophase-support composites have been attempted in order to reduce or relieve the CO poisoning effect. In this review paper, we summarize these efforts based upon our recent research results. The Pt-based nanocatalysts were designed by chemical synthesis and thin-film technology, and were characterized by a variety of analyses. According to bifunctional mechanism, it was concluded that good alloy formation with $2^{nd}$ metal (e.g., Ru) as well as the metallic state and optimum portion of Ru element in the anode catalyst contribute to an enhanced catalytic activity for methanol electrooxidation. In addition, we found that the modified electronic properties of platinum in Pt alloy electrodes as well as the surface and bulk structure of Pt alloys with a proper composition could be attributed to a higher catalytic activity for methanol electooxdation. Proton conducting contribution of nanosized electrocatalysts should also be considered to be excellent in methanol electrooxidation (Spillover effect). Finally, we confirmed the ensemble effect, which combined all above effects, in Pt-based nanocatalsyts especially, such as PtRuRhNi and $PtRuWO_{3}$, contribute to an enhanced catalytic activity.

  • PDF