• Title/Summary/Keyword: Thin-film metallization

Search Result 59, Processing Time 0.037 seconds

Properties on Annealing of Chalcogenide Materials at Programmable Metallization Cell (Programmable Metallization Cell에서 칼코게나이드 물질의 열처리에 따른 특성)

  • Choi, Hyuk;Kim, Hyun-Gu;Nam, Ki-Hyun;Ju, Long-Yun;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.164-164
    • /
    • 2007
  • Photodiffusion of silver into chalcogenide thin film is one of the most interesting effects that occurs in chalcogenide glass as it theatrically changes the properties of the initial material and forms a ternary. Programmable Metallization Cell(PMC) Randon Access Memory use for photodiffusion of mobile metal is based on the electrochemical growth and removal of nanoscale metallic pathway in thin film of solid electrolyte. This paper investigates the annling properties on Ag-doped $Ge_{25}Se_{75}$ thin film structure and describes the electrical characteristics of PMC-RAM. The composition of the intercalation products containing Ag is confirmed using X-ray diffraction which shows the formation of Ag-doped $Ge_{25}Se_{75}$.

  • PDF

Evaluation of the Residual Stress with respect to Supporting Type of Multi-layer Thin Film for the Metallization of Pressure Sensor (압력센서의 배선을 위한 다층 박막의 지지조건 변화에 따른 잔류응력 평가)

  • 심재준;한근조;김태형;한동섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1537-1540
    • /
    • 2003
  • MEMS technology with micro scale is complete system utilized as the sensor. micro electro device. The metallization of MEMS is very important to transfer the power operating the sensor and signal induced from sensor part. But in the MEMS structures local stress concentration and deformation is often happened by geometrical shape and different constraint on the metallization. Therefore. this paper studies the effect of supporting type and thickness ratio about thin film thickness of the substrate thickness for the residual stress variation caused by thermal load in the multi-layer thin film. Specimens were made from materials such as Al, Au and Cu and uniform thermal load was applied, repeatedly. The residual stress was measured by FEA and nano-indentation using AFM. Generally, the specimen made of Al induced the large residual stress and the 1st layer made of Al reduced the residual stress about half percent than 2nd layer. Specimen made of Cu and Au being the lower thermal expansion coefficient induce the minimum residual stress. Similarly the lowest indentation length was measured in the Au_Cu specimen by nano-indentation.

  • PDF

Properties on Electrical Resistance Change of Ag-doped Chalcogenide Thin Films Application for Programmable Metallization Cell (Programmable Metallization Cell 응용을 위한 Ag-doped 칼코게나이드 박막의 전기적 저항 변화 특성)

  • Choi, Hyuk;Koo, Sang-Mo;Cho, Won-Ju;Lee, Young-Hie;Chung, Hong-Bay
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.12
    • /
    • pp.1022-1026
    • /
    • 2007
  • We have demonstrated new functionalities of Ag doped chalcogenide glasses based on their capabilities as solid electrolytes. Formation of such amorphous systems by the introduction of silver via photo-induced diffusion in thin chalcogenide films is considered. The influence of silver on the properties of the newly formed materials is regarded in terms of diffusion kinetics and Ag saturation is related to the composition of the hosting material. Silver saturated chalcogenide glasses have been used in the formation of solid electrolyte which is the active medium in programmable metallization cell (PMC) devices. In this paper, we investigated electrical and optical properties of Ag-doped chalcogenide thin film on changed thickness of Ag and chalcogenide thin films, which is concerned at Ag-doping effect of PMC cell. As a result, when thickness of Ag and chalcogenide thin film was 30 nm and 50 nm respectively, device have excellent characteristics.

Electrical and Optical Properties on Thickness of Ag and Chalcogenide Thin Films at Programmable Metallization Cell Device (Programmable Metallization Cell(PMC) 소자에서 Ag와 칼코게나이드 박막의 두께에 따른 전기적 광학적 특성)

  • Choi, Hyuk;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.24-24
    • /
    • 2007
  • We have demonstrated new functionalities of Ag doped chalcogenide glasses based on their capabilities as solid electrolytes. Formation of such amorphous systems by the introduction of silver via photo-induced diffusion in thin chalcogenide films is considered. The influence of silver on the properties of the newly formed materials is regarded in terms of diffusion kinetics and Ag saturation is related to the composition of the hosting material. Silver saturated chalcogenide glasses have been used in the formation of solid electrolyte which is the active medium in programmable metallization cell (PMC) devices. In this paper, we investigated electrical and optical properties of Ag-doped chalcogenide thin film on changed thickness of Ag and chalcogenide thin films, which is concerned at Ag-doping effect of PMC cell. As a result, when thickness of Ag and chalcogenide thin film was 30nm and 50nm respectively, device have excellent characteristics.

  • PDF

Evaluation of the Residual Stress with Respect to Supporting Type of Multi-layer Thin Film for the Metallization of Pressure Sensor (압력센서의 배선을 위한 다층 박막의 지지조건 변화에 따른 잔류응력 평가)

  • Shim, Jae-Joon;Han, Geun-Jo;Han, Dong-Seup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.532-538
    • /
    • 2004
  • MEMS technology applying to the sensors and micro-electro devices is complete system. These microsystems are made by variable processes. Especially, the mentallization process has very important functions to transfer the power operating the sensor and signal induced from sensor part. But in the structures of MEMS the local stress concentration and deformation are often yielded by an irregular geometrical shape and different constraint. Therefore, this paper studies the effect of supporting type and thickness ratio about thin film of the substrate on the residual stress variation when the thermal loads is applied to the multi-layer thin film fabricated by metallization process. Specimens were made from several materials such as Al, Au and Cu. Then, uniform thermal load was applied, repeatedly. The residual stress was measured by FE Analysis and nano-indentation method using AFM. Generally, the specimen made of Al induced the larger residual stress than that of made of other materials. Specimen made of Cu and Au having the low thermal expansion coefficient induces the minimum residual stress. Similarly, the lowest indentation length was measured by nano-indentation method in the Si/Au/Cu specimen. Particularly, clusters are created in the specimen made of Cu by thermal load and the indentation length became increasingly large by cluster formation.

Fabrication and Characterization of Window Metallization Pattern for Optical Module Package (광모듈 패키지용 Window 의 Metallization Pattern 제작 및 특성 평가)

  • Jo Hyeon Min;Dan Seong Baek;Ryu Heon Wi;Gang Nam Gi
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.11a
    • /
    • pp.239-242
    • /
    • 2003
  • Optical module package is a hermetic metal-ceramic package for carrying optical IC. In case of LD(laser diode) module, window is used for both the path of optical signal and hermetic sealing of package. So, window has the metallization pattern on the surface for brazing process with package wall. In this study, several method were investigated for metallization. Thin film, thick film and mixed method were used for fabrication of metallization pattern. After brazing process, hermeticity and adhesion strength were tested for characterization of metallization pattern.

  • PDF

Electrochemical Metallization Processes for Copper and Silver Metal Interconnection (구리 및 은 금속 배선을 위한 전기화학적 공정)

  • Kwon, Oh Joong;Cho, Sung Ki;Kim, Jae Jeong
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.141-149
    • /
    • 2009
  • The Cu thin film material and process, which have been already used for metallization of CMOS(Complementary Metal Oxide Semiconductor), has been highlighted as the Cu metallization is introduced to the metallization process for giga - level memory devices. The recent progresses in the development of key elements in electrochemical processes like surface pretreatment or electrolyte composition are summarized in the paper, because the semiconductor metallization by electrochemical processes such as electrodeposition and electroless deposition controls the thickness of Cu film in a few nm scales. The technologies in electrodeposition and electroless deposition are described in the viewpoint of process compatibility between copper electrodeposition and damascene process, because a Cu metal line is fabricated from the Cu thin film. Silver metallization, which may be expected to be the next generation metallization material due to its lowest resistivity, is also introduced with its electrochemical fabrication methods.

Investigation of thermal Characteristics with Amorphous Chalcogenide Thin Film for Programmable Metallization Cell (PMC 응용을 위한 비정질 칼코게나이드 박막의 열적특성)

  • Ju, Long-Yun;Nam, Ki-Hyeon;Choi, Hyuk;Chung, Hong-Bay
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1331-1332
    • /
    • 2007
  • In the present works, we investigate the thermal characteristics on Ag/$As_{2}S_{3}$ and Ag/$As_{40}Ge_{10}Se_{15}S_{35}$ amorphous chalcogenide thin film structure for PMC (Programmable Metallization Cell).As the results of resistance change with the temperature on Ag/$As_{40}Ge_{10}Se_{15}S_{35}$ amorphous chalcogenide thin film, the resistance was abruptly dropped from the initial resistance of 1.32 M ${\Omega}$ to the saturated value of 800 ${\Omega}$ at $203^{\circ}C$. On the other hand, the resistance increased to 1.3 $M{\Omega}$ at $219^{\circ}C$.

  • PDF

Solid Electrolytes Characteristics Based on Cu-Ge-Se for Analysis of Programmable Metallization Cell

  • Nam, Ki-Hyun;Chung, Hong-Bay
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.6
    • /
    • pp.227-230
    • /
    • 2008
  • Programmable Metallization Cell (PMC) Random Access Memory is based on the electrochemical growth and removal of electrical nanoscale pathways in thin films of solid electrolytes. In this study, we investigated the nature of thin films formed by the photo doping of copper ions into chalcogenide materials for use in programmable metallization cell devices. These devices rely on metal ions transport in the film so produced to create electrically programmable resistance states. The results imply that a Cu-rich phase separates owing to the reaction of Cu with free atoms from chalcogenide materials.

A Study on the Enhancement of Electrical Conductivity of Copper Thin Films Prepared by CVD Technology (화학적기상증착법에 의한 구리박막의 전기전도도 개선에 관한 연구)

  • 조남인;김용석;김창교
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.6
    • /
    • pp.459-466
    • /
    • 2000
  • For the applications in the ultra-large-scale-integration (ULSI) metallization processing copper thin films have been prepared by metal organic chemical vapor deposition (MOCVD) technology on TiN/Si substrates. The films have been deposited with varying the experimental conditions of substrate temperatures and copper source vapor pressures. The films were then annealed in a vacuum condition after the deposition and the annealing effect to the electrical conductivity of the films was measured. The grain size and the crystallinity of the films were observed to be increased by the post annealing and the electrical conductivity was also increased. The best electrical property of the copper film was obtained by in-situ annealing treatment at above 40$0^{\circ}C$ for the sample prepared at 18$0^{\circ}C$ of the substrate temperature.

  • PDF