• 제목/요약/키워드: Thin film thickness

검색결과 1,955건 처리시간 0.031초

용액 공정을 이용한 IZO 트랜지스터의 전기적 성능에 대한 박막 두께의 영향 (Effect of Thin-Film Thickness on Electrical Performance of Indium-Zinc-Oxide Transistors Fabricated by Solution Process)

  • 김한상;경동구;김성진
    • 한국전기전자재료학회논문지
    • /
    • 제30권8호
    • /
    • pp.469-473
    • /
    • 2017
  • We investigated the effect of different thin-film thicknesses (25, 30, and 40 nm) on the electrical performance of solution-processed indium-zinc-oxide (IZO) thin-film transistors (TFTs). The structural properties of the IZO thin films were investigated by atomic force microscopy (AFM). AFM images revealed that the IZO thin films with thicknesses of 25 and 40 nm exhibit an uneven distribution of grains, which deforms the thin film and degrades the performance of the IZO TFT. Further, the IZO thin film with a thickness of 30 nm exhibits a homogeneous and smooth surface with a low RMS roughness of 1.88 nm. The IZO TFTs with the 30-nm-thick IZO film exhibit excellent results, with a field-effect mobility of $3.0({\pm}0.2)cm^2/Vs$, high Ion/Ioff ratio of $1.1{\times}10^7$, threshold voltage of $0.4({\pm}0.1)V$, and subthreshold swing of $0.7({\pm}0.01)V/dec$. The optimization of oxide semiconductor thickness through analysis of the surface morphologies can thus contribute to the development of oxide TFT manufacturing technology.

구리와 은 박막의 열팽창계수에 미치는 결정립 크기와 박막 두께의 영향 (The Effect of Grain Size and Film Thickness on the Thermal Expansion Coefficient of Copper and Silver Thin Films)

  • 황슬기;김영만
    • 대한금속재료학회지
    • /
    • 제48권12호
    • /
    • pp.1064-1069
    • /
    • 2010
  • Thin films have been used in a large variety of technological applications such as solar cells, optical memories, photolithographic masks, protective coatings, and electronic contacts. If thin films experience frequent temperature changes, thermal stresses are generated due to the difference in the coefficient of thermal expansion between the film and substrate. Thermal stresses may lead to damage or deformation in thin film used in electronic devices and micro-machined structures. Thus, knowledge of the thermomechanical properties of thin films, such as the coefficient of thermal expansion, is an important issue in determining the stability and reliability of the thin film devices. In this study, thermal cycling of Cu and Ag thin films with various microstructures was employed to assess the coefficient of thermal expansion of the films. The result revealed that the coefficient of thermal expansion (CTE) of the Cu and Ag thin films increased with an increasing grain size. However, the effect of film thickness on the CTE did not show a remarkable difference.

대면적 박막 태양전지 적용을 위한 CdTe 박막의 화학적기계적연마 공정 특성 (Chemical Mechanical Polishing Characteristics of CdTe Thin Films for Application to Large-area Thin Film Solar Cell)

  • 양정태;신상헌;이우선
    • 전기학회논문지
    • /
    • 제58권6호
    • /
    • pp.1146-1150
    • /
    • 2009
  • Cadmium telluride (CdTe) is one of the most attractive photovoltaic materials due to its low cost, high efficiency and stable performance in physical, optical and electronic properties. Few researches on the influences of uniform surface on the photovoltaic characteristics in large-area CdTe solar cell were not reported. As the preceding study of the effects of thickness-uniformity on the photovoltaic characteristics for the large-area CdTe thin film solar cell, chemical mechanical polishing (CMP) process was investigated for an enhancement of thickness-uniformity. Removal rate of CdTe thin film was 3160 nm/min of the maximum value at the 200 $gf/cm^2$ of down force (pressure) and 60 rpm of table speed (velocity). The removal rate of CdTe thin film was more affected by the down force than the table speed which is the two main factors directly influencing on the removal rate in CMP process. RMS roughness and peak-to-valley roughness of CdTe thin film after CMP process were improved to 96.68% and 85.55%, respectively. The optimum process condition was estimated by 100 $gf/cm^2$ of down force and 60 rpm of table speed with the consideration of good removal uniformity about 5.0% as well as excellent surface roughness for the large-area CdTe solar cell.

건식법에 의해 제조된 내열성 폴리이미드박막의 열적특성 및 습도감지특성 (Thermal and Humidity Sensing Properties of Heat Resistant Polyimide Thin Film Manufactured by Dry Process)

  • 임경범;김기환;황선양;김종윤;황명환
    • 전기학회논문지
    • /
    • 제56권6호
    • /
    • pp.1080-1086
    • /
    • 2007
  • The aim of this paper is to establish the optimum fabrication condition of specimens, using the Vapor Deposition Polymerization Method(VDPM), which is one of modesto prepare functional organic thin films using a dry process, and to develop a thin film type humidity sensor which has good humidity sensitive characteristics. The inner part of the film became denser and roughness of the film surface eased as curing temperature increased so that thickness of the film could be made uniform. This also shows the appropriate curing temperature was $250^{\circ}C$. The basic structure of the humidity sensor is a parallel capacitor which consists of three layers of Aluminum/Polyimide/Aluminum. The result of SEM and AFM measurement shows that the thickness of PI thin films decreased and the refraction increased as curing temperature increased, which indicates that a capacitance-type humidity sensor utilizing polyimide thin film is fabricated on a glass substrate. The characteristics of fabricated samples were measured under various conditions, and the samples had linear characteristics in the range of 20-80 %RH, independent of temperature change, and low hysteresis characteristic.

띠 굽힘 시험을 통한 100 nm 두께 금 박막의 기계적 특성 평가 (Mechanical characterization of 100 nm-thick Au thin film using strip bending test)

  • 김재현;이학주;한승우;백창욱;김종만;김용권
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.252-257
    • /
    • 2004
  • Nanometer-sized structures are being applied to many devices including micro/nano electronics, optoelectronics, quantum devices, MEMS/NEMS, biosensors, etc. Especially, the thin film with submicron thickness is a basic structure for fabricating these devices, but its mechanical behaviors are not well understood. The mechanical properties of the thin film are different from those of the bulk structure and are difficult to measure because of its handling inconvenience. Several techniques have been applied to mechanical characterization of the thin film, such as nanoindentation test, micro/nano tensile test, strip bending test, etc. In this study, we focus on the strip bending test because of its high accuracy and moderate specimen preparation efforts, and measure Au thin film, which is a very popular material in micro/nano electronic devices. Au film is deposited on Si substrate by evaporation process, of which thickness is 100nm. Using the strip bending test, we obtain elastic modulus, yield and ultimate tensile strength, and residual stress of Au thin film.

  • PDF

Pd이 도핑된 $SnO_2$ 박막 가스감지막의 특성 (Characteristics of Pd doped $SnO_2$ gas sensitive thin films)

  • 김진해;김대현;이용성;김정규;전춘배;박효덕;박기철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.1779-1781
    • /
    • 2000
  • Pd doped $SnO_2$ thin film sensors were prepared on alumina substrate by rf magnetron sputtering method. The sensitivity of thin film was investigated by varying the heat-treatment temperature, film thickness and gas species. The thin film heat-treated at 600$^{\circ}C$ and film thickness of 5000${\AA}$ showed the highest sensitivity at an operating temperature of 400$^{\circ}C$.

  • PDF

그림자효과를 이용하여 증착한 타이타늄 박막의 미세구조 및 형상 (Microstructure and Morphology of Titanium Thin Films Deposited by Using Shadow Effect)

  • 한창석;진성윤;권혁구
    • 한국재료학회지
    • /
    • 제29권11호
    • /
    • pp.709-714
    • /
    • 2019
  • In order to observe the microstructure and morphology of porous titanium -oxide thin film, deposition is performed under a higher Ar gas pressure than is used in the general titanium thin film production method. Black titanium thin film is deposited on stainless steel wire and Cu thin plate at a pressure of about 12 Pa, but lustrous thin film is deposited at lower pressure. The black titanium thin film has a larger apparent thickness than that of the glossy thin film. As a result of scanning electron microscope observation, it is seen that the black thin film has an extremely porous structure and consists of a separated column with periodic step differences on the sides. In this configuration, due to the shadowing effect, the nuclei formed on the substrate periodically grow to form a step. The surface area of the black thin film on the Cu thin plate changes with the bias potential. It has been found that the bias of the small negative is effective in increasing the surface area of the black titanium thin film. These results suggest that porous titanium-oxide thin film can be fabricated by applying the appropriate oxidation process to black titanium thin film composed of separated columns.

초음파 Spectroscopy에 의한 두께측정을 위한 다중반사파의 시뮬레이션 (Computer Simulation of Multiple Reflection Waves for Thickness Measurement by Ultrasonic Spectroscopy)

  • 박익근;한응교;최만용
    • 비파괴검사학회지
    • /
    • 제12권1호
    • /
    • pp.9-15
    • /
    • 1992
  • Ultrasonic spectroscopy is likely to become a very powerful NDE method for detection of microfects and thickness measurement of thin film below the limit of ultrasonic distance resolution in the opaque materials, provides a useful information that cannot be obtained by a conventional ultrasonic measuring system. In this paper, we considered a thin film below the limit of ultrasonic distance resolution sandwitched between two substances as acoustical analysis model, demonstrated the usefulness of ultrasonic spectroscopic analysis technique using information of ultrasonic frequency for measurements of thin film thickness, regardless of interference phenomenon and phase reversion of ultrasonic waveform. By using frequency intervals(${\triangle}f$) of periodic minima from the ratio of reference power spectrum of reflective waveform obtained a sample to power spectrum of multiple reflective waves obtained interference phenomenon caused by ultrasonic waves reflected at the upper and lower surfaces of a thin layer, can measured even dimensions of interest are smaller than the ultrasonic wave length with simplicity and accuracy.

  • PDF

ZnO 박막의 두께변화에 따른 광학적 특성변화 연구 (Luminescence properties of ZnO thin films depending on the variation of the film thickness)

  • 심은섭;강홍성;강정석;김종훈;이상렬
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.135-138
    • /
    • 2001
  • We report the structural ,optical and electrical properties of ZnO thin films depending on the variation of the film thickness. The properties of the films deposited on sapphire (001) substrates using a pulsed laser deposition technique (PLD) were characterized with XRD, hall measurement and photoluminescence (PL). In our study, the increase of the thickness of ZnO thin films shows the improvement of the structural and optical properties. The electric properties of the films were also well matched with the structural and optical properties

  • PDF