• Title/Summary/Keyword: Thin film growth

Search Result 1,261, Processing Time 0.035 seconds

A Study on properties of $CuInSe_2$ thin films by substrate temperature and annealing temperature (기판온도와 열처리 온도에 따른 $CuInSe_2$ 박막의 특성분석)

  • Kim, Young-Jun;Yang, Hyeon-Hun;Jeong, Woon-Jo;Park, Gye-Choon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.354-355
    • /
    • 2007
  • Process variables for manufacturing the $CuInSe_2$ thin film were established in order to clarify optimum conditions for growth of the thin film depending upon process conditions (substrate temperature, sputtering pressure, DC/RF Power), and then by changing a number of vapor deposition conditions and Annealing conditions variously, structural and electrical characteristics were measured. Thereby, optimum process variables were derived. For the manufacture of the $CuInSe_2$, Cu, In and Se were vapor-deposited in the named order. Among them, Cu and In were vapor-deposited by using the sputtering method in consideration of their adhesive force to the substrate, and the DC/RF power was controlled so that the composition of Cu and In might be 1 : 1, while the surface temperature having an effect on the quality of the thin film was changed from 100[$^{\circ}C$] to 300[$^{\circ}C$] at intervals of 50[$^{\circ}C$].

  • PDF

Study on Improvement of Etch Rate and SiO2 Regrowth in High Selectivity Phosphoric Acid Process (고선택비 인산공정에서의 식각율 향상과 SiO2 재성장에 관한 연구)

  • Lee, Seunghoon;Mo, Sungwon;Lee, Yangho;Bae, JeongHyun
    • Korean Journal of Materials Research
    • /
    • v.28 no.12
    • /
    • pp.709-713
    • /
    • 2018
  • To improve the etch rate of $Si_3N_4$ thin film, $H_2SiF_6$ is added to increase etching rate by more than two times. $SiO_3H_2$ is gradually added to obtain a selectivity of 170: 1 at 600 ppm. Moreover, when $SiO_3H_2$ is added, the etching rate of the $SiO_2$ thin film increases in proportion to the radius of the wafer. In $Si_3N_4$ thin film, there is no difference in the etching rate according to the position. However, in the $SiO_2$ thin film, the etching rate increases in proportion to the radius. At the center of the wafer, the re-growth phenomenon is confirmed at a specific concentration or above. The difference in etch rates of $SiO_2$ thin films and the reason for regrowth at these positions are interpreted as the result of the flow rate of the chemical solution replaced with fresh solution.

Growth of La0.35Pr0.35Ca0.3MnO3/LaAlO3 Thin Film using Laser Molecular-Beam Epitaxy and its Magnetic Properties (Laser Molecular-Beam Epitaxy를 이용한 La0.35Pr0.35Ca0.3MnO3/LaAlO3 초격자 박막의 합성과 그 자기적 특성의 연구)

  • Seung, S.K.;Song, J.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.3
    • /
    • pp.93-98
    • /
    • 2011
  • We successfully grew $La_{0.35}Pr_{0.35}Ca_{0.3}MnO_3$(LPCMO)/$LaAlO_3$(LAO) thin film using Laser Molecular-Beam Epitaxy and studied post-growth annealing effects ($750^{\circ}C$, 5 h) on its crystal structural and magnetic properties. Whereas the single-layered LPCMO and LPCMO/STO superlattice thin films show rough surface before and after the post-growth annealing, LPCMO/LAO superlattice shows a relatively very flat surface even after the post-growth annealing. The enhancement of ferromagnetism of LPCMO/LAO superlattice after the post-growth annealing was remarkable compared to the single-layered LPCMO thin film. The coercive and saturation magnetic field of the single-layed LPCMO thin film were decreased after the post-annealing. However, for LPCMO/LAO superlattice, a same coercive and increased saturation magnetic field were exhibited after post-growth annealing. We suggest that these peculiar observations are originate from the super-structure of LPCMO and LAO.

Microstructure and Electrical Properties of SnO2 Thin Films Grown by Thermal CVD Method (열 CVD법으로 증착된 SnO2 박막의 미세구조와 전기적 특성)

  • Jeong, Jin;Choi, Seong-Pyung;Shin, Dong-Chan;Koo, Jae-Bon;Song, Ho-Jun;Park, Jin-Seoung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.5
    • /
    • pp.441-447
    • /
    • 2003
  • When a SnO$_2$ thin film was deposited by thermal CVD, two different types of growth behavior that were dependent on the deposition temperature were observed. The film grown at 475$^{\circ}C$ had a wide grain size distribution and a faceted surface shape. On the other hand, the film grown at 5$25^{\circ}C$ had a relatively narrow grain size distribution and a rounded sulfate shape. The aspects of grain shape and growth behavior agree well with the theory of gram growth and a roughening transition. The charge tarrier density decreased with deposition time. According to photoluminescence measurements, the peak intensity of the spectra occurred at approximately 2.5 eV, which is related to oxygen vacancies, and decreased with increasing of deposition time. These measurement results suggest that the number of oxygen vacancies, which is related to the electrical conductivity, decrease with deposition time.

Selective Atomic Layer Deposition of Co Thin Films Using Co(EtCp)2 Precursor (Co(EtCp)2프리커서를 사용한 Co 박막의 선택적 원자층 증착)

  • Sujeong Kim;Yong Tae Kim;Jaeyeong Heo
    • Korean Journal of Materials Research
    • /
    • v.34 no.3
    • /
    • pp.163-169
    • /
    • 2024
  • As the limitations of Moore's Law become evident, there has been growing interest in advanced packaging technologies. Among various 3D packaging techniques, Cu-SiO2 hybrid bonding has gained attention in heterogeneous devices. However, certain issues, such as its high-temperature processing conditions and copper oxidation, can affect electrical properties and mechanical reliability. Therefore, we studied depositing only a heterometal on top of the Cu in Cu-SiO2 composite substrates to prevent copper surface oxidation and to lower bonding process temperature. The heterometal needs to be deposited as an ultra-thin layer of less than 10 nm, for copper diffusion. We established the process conditions for depositing a Co film using a Co(EtCp)2 precursor and utilizing plasma-enhanced atomic layer deposition (PEALD), which allows for precise atomic level thickness control. In addition, we attempted to use a growth inhibitor by growing a self-assembled monolayer (SAM) material, octadecyltrichlorosilane (ODTS), on a SiO2 substrate to selectively suppress the growth of Co film. We compared the growth behavior of the Co film under various PEALD process conditions and examined their selectivity based on the ODTS growth time.

Growth mechanism of three dimensionally structured TiO2 thin film for gas sensors (가스 감응용 3차원 구조체 TiO2 박막 성장기구)

  • Moon, Hi-Gyu;Yoon, Seok-Jin;Park, Hyung-Ho;Kim, Jin-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.110-115
    • /
    • 2009
  • Polystyrene (PS) microspheres were used to good advantage as a template material to prepare macroporous $TiO_2$ thin films. This is enabled to run the thermal decomposition of the PS without the collapsing of the 3-D macroporous framework during the calcination step. $TiO_2$ thin films were deposited onto the colloidal templated substrates at room temperature by RF sputtering, and then samples were thermally treated at $450^{\circ}C$ for 40.min in air to remove the organic colloidal template and induce crystallization of the $TiO_2$ film. The macroporous $TiO_2$ thin film exhibited a quasi-ordered partially hexagonal close-packed structure. Burst holes, estimated to be formed during PS thermal decomposition, are seen as the hemisphere walls. the inner as well as the outer surfaces of the hollow hemispheres formed by the method of thermal decomposition can be easily accessed by the diffusing gas species. As a consequence, the active surface area interacting with the gas species is expected to be enlarged about by a factor of fourth as large as compared to that of a planar films. Also the thickness at neighboring hemisphere could be controlled a few nm thickness. If the acceptor density becomes as large that depletion width reaches those thickness, the device is in the pinch off-situation and a strong resistance change should be observed.

A Study on Properties of CuInSe2 Thin Films by Substrate Temperature and Annealing Temperature (기판온도와 열처리 온도에 따른 CuInSe2 박막의 특성분석)

  • Yang, Hyeon-Hun;Jeong, Woon-Jo;Park, Gye-Choon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.7
    • /
    • pp.600-605
    • /
    • 2007
  • Process variables for manufacturing the $CuInSe_2$ thin film were established in order to clarify optimum conditions for growth of the thin film depending upon process conditions (substrate temperature, sputtering pressure, DC/RF Power), and then by changing a number of vapor deposition conditions and Annealing conditions variously, structural and electrical characteristics were measured. Thereby, optimum process variables were derived. For the manufacture of the $CuInSe_2$, Cu, In and Se were vapor-deposited in the named order. Among them, Cu and In were vapor-deposited by using the sputtering method in consideration of their adhesive force to the substrate, and the DC/RF power was controlled so that the composition of Cu and In might be 1 : 1, while the surface temperature having an effect on the quality of the thin film was changed from $100^{\circ}C\;to\;300^{\circ}C$ at intervals of $50^{\circ}C$. The diffract fringe of X-ray, which depended upon the substrate temperature and the Annealing temperature of the manufactured $CuInSe_2$ thin film, was investigated. scanning electron microgaphs of represents a case that a sample manufactured at the substrate temperature of $100^{\circ}C$ was thermally treated at $200{\times}350^{\circ}C$. As a result, at $500^{\circ}C$ of the Annealing temperature, their chemical composition was measured in the proportion of 1 : 1 : 2. It could be known that under this condition, the most excellent thin film was formed, compared with the other conditions.

Growth Behavior of Heteroepitaxial β-Ga2O3 Thin Films According to the Sapphire Substrate Position in the Hot Zone of the Mist Chemical Vapor Deposition System (미스트화학기상증착 시스템의 Hot Zone 내 사파이어 기판 위치에 따른 β-Ga2O3 이종 박막 성장 거동 연구)

  • Kyoung-Ho Kim;Heesoo Lee;Yun-Ji Shin;Seong-Min Jeong;Si-Young Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.5
    • /
    • pp.500-504
    • /
    • 2023
  • In this study, the heteroepitaxial thin film growth of β-Ga2O3 was studied according to the position of the susceptor in mist-CVD. The position of the susceptor and substrate was moved step by step from the center of the hot zone to the inlet of mist in the range of 0~50 mm. It was confirmed that the average thickness increased to 292 nm (D1), 521 nm (D2), and 580 nm (D3) as the position of the susceptor moved away from the center of the hot zone region. The thickness of the lower region of the substrate is increased compared to the upper region. The surface roughness of the lower region of the substrate also increased because the nucleation density increased due to the increase in the lifetime of the mist droplets and the increased mist density. Therefore, thin film growth of β-Ga2O3 in mist-CVD is performed by appropriately adjusting the position of the susceptor (or substrate) in consideration of the mist velocity, evaporation amount, and temperature difference with the substrate, thereby determining the crystallinity of the thin film, the thickness distribution, and the thickness of the thin film. Therefore, these results can provide insights for optimizing the mist-CVD process and producing high-quality β-Ga2O3 thin films for various optical and electronic applications.

A Study on Properties of $CuInS_{2}$ thin films by Cu/In ratio (Cu/In 비에 따른 $CuInS_{2}$ 박막의 특성에 관한 연구)

  • Yang, Hyeon-Hun;Kim, Young-Jun;Jeong, Woon-Jo;Park, Gye-Choon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.326-329
    • /
    • 2007
  • $CuInS_{2}$ thin films were synthesized by sulpurization of Cu/In Stacked elemental layer deposited onto glass Substrates by vacuum furnace annealing at temperature 200[$^{\circ}C$]. And structural and electrical properties were measured in order to certify optimum conditions for growth of the ternary compound semiconductor $CuInS_{2}$ thin films with non-stoichiometry composition. $CuInS_{2}$ thin film was well made at the heat treatment 200[$^{\circ}C$] of SLG/Cu/ln/S stacked elemental layer which was prepared by thermal evaporator, and chemical composition of the thin film was analyzed nearly as the proportion of 1 : 1 : 2. Physical properties of the thin film were investigated at various fabrication conditions substrate temperature, annealing and temperature, annealing time by XRD, FE-SEM and Hall measurement system. At the same time, carrier concentration, hall mobility and resistivity of the thin films was $9.10568{\times}10^{17}$ [$cm^{-3}$], 312.502 [$cm^{2}/V{\cdot}s$] and $2.36{\times}10^{-2}$ [${\Omega}{\cdot}cm$], respectively.

  • PDF

The Characteristics of Al Thin Films on Ar Plasma Surface Treatment (Al 박막의 Ar 플라즈마 표면처리에 따른 특성)

  • Park, Sung-Hyun;Ji, Seung-Han;Jeon, Seok-Hwan;Chu, Soon-Nam;Lee, Sang-Hoon;Lee, Neung-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1333-1334
    • /
    • 2007
  • Al thin film was the most popular electrode in semiconductor and flat panel display world, because of its electrical conductivity, selectivity and easy to apply to thin film. However, Al thin films were not good to use on the bottom electrode about the crystalline growth of inorganic compound materials such as ZnO, AlN and GaN, because of its surface roughness and melting points. In this paper, we investigated Ar plasma surface treatment of Al thin film to enhance the surface roughness and electrical conductivity using the reactive ion etching system. Several process conditions such as RF power, working pressure and process time were controlled. In results, the surface roughness showed $15.53\;{\AA}$ when RF power was 100 W, working pressure was 50 mTorr and process time was 10 min. Also, we tried to deposit ZnO thin films on the each Al thin films, the upper conditions showed the best crystalline characteristics by x-ray diffraction.

  • PDF