• Title/Summary/Keyword: Thin film battery

Search Result 95, Processing Time 0.026 seconds

A Study on The Fabrication and Electrochemical Characterization of Amorphous Vanadium Oxide Thin Films for Thin Film Micro-Battery (마이크로 박막 전지용 비정질 산화바나듐 박막의 제작 및 전기화학적 특성에 관한 연구)

  • 전은정;신영화;남상철;조원일;윤영수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.634-637
    • /
    • 1999
  • The amorphous vanadium oxide as a cathode material is very preferable for fabricating high performance micro-battery. The amorphous vanadium oxide cathode is preferred over the crystalline form because three times more lithium ions can be inserted into the amorphous cathode, thus making a battery that has a higher capacity. The electrochemical properties of sputtered films are strongly dependent on the oxygen partial pressure in the sputtering gas. The effect of different oxygen partial pressure on the electrochemical properties of vanadium oxide thin films formed by r.f. reactive sputtering deposition were investigated. The stoichiometry of the as-deposited films were investigated by Auger electro spectroscopy. X-ray diffraction and atomic force microscopy measurements were carried out to investigate structural properties and surface morphology, respectively. For high oxygen partial pressure(>30% ), the films were polycrystalline V$_2$O$_{5}$ while an amorphous vanadium oxide was obtained at the lower oxygen partial pressure(< 15%). Half-cell tests were conducted to investigate the electrochemical properties of the vanadium oxide film cathode. The cell capacity was about 60 $\mu$ Ah/$\textrm{cm}^2$ m after 200 cycle when oxygen partial pressure was 20%. These results suggested that the capacity of the thin film battery based on vanadium oxide cathode was strongly depends on crystallinity.y.

  • PDF

A Study on Corrosion Resistance and Electrical Surface Conductivity of an Electrodeposited Ni-W Thin Film (전해도금에 의한 Ni-W 합금의 내식성 및 표면 전도도 특성 연구)

  • Park, Je-Sik;Jeong, Goo-Jin;Kim, Young-Jun;Kim, Ki-Jae;Lee, Churl-Kyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.2
    • /
    • pp.68-73
    • /
    • 2011
  • A Ni-W thin-film was synthesized by electrodeposition, and its corrosion resistance and electrical surface conductivity were investigated. Amount of tungsten in the Ni-W thin-film increased linearly with current density during the electrodeposition, and crack-free and low-crystalline Ni-21 at.%W coating layer was obtained. Corrosion resistances of the Ni-W thin-films were examined with an anodic polarization method and a storage test in a strong sulfuric acid solution. As a result, the Ni-21 at.%W thin-film exhibited the greatest corrosion resistance, and maintained the electrical surface conductivity even after the severe corrosion test, which could be applicable as a surface treatment for advanced metallic bipolar plates in fuel cell or redox flow battery systems.

The Effect of Substrate Roughness on the Fabrication and Performance of All-Solid-State Thin-Film Lithium-Ion Battery (기판의 표면 거칠기 특성이 전고상 리튬박막 이차전지의 제작 및 전기화학 특성에 미치는 영향)

  • Kim, Jong Heon;Xiao, Cheng-Fan;Go, Kwangmo;Lee, Kyung Jin;Kim, Hyun-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.437-443
    • /
    • 2019
  • All-solid-state thin-film lithium-ion batteries are important in the development of next-generation energy storage devices with high energy density. However, thin-film batteries have many challenges in their manufacturing procedure. This is because there are many factors, such as substrate selection, to consider when producing the thin film multilayer structure. In this study, we compare the fabrication and performance of all-solid-state thin-film lithium-ion batteries with a $LiNi_{0.5}Mn_{1.5}O_4$ cathode/LiPON solid electrolyte/$Li_4Ti_5O_{12}$ anode structure using stainless steel and Si substrates with different surface roughness. We demonstrate that the smoother the surface of the substrate, the thinner the thickness of the all-solid-state thin-film lithium-ion battery that can be made, and as a result, the corresponding electrochemical characteristics can be improved.

Safe Decomposition of the Vehicle Waste Battery Module and Development of Separation Process of Cathode Active Material from Aluminum Thin Film (자동차용 폐 리튬 이차전지 모듈의 안정적 해체와 알루미늄 박막으로부터 양극활물질의 분리공정 개발)

  • Kim, Younjung;Oh, In-Gyung;Hong, Yong Pyo;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.6
    • /
    • pp.440-445
    • /
    • 2019
  • It has developed a method that can recover efficiently the reproducible resources from the vehicle waste lithium second battery module. Module cell consists of copper thin film, aluminum thin film and diaphragm made with polymer between these thin films. Cell was disassembled completely without any damage in glove box and through several steps. Preferentially, cathode active material was separated from aluminum thin film at heat treatment of 400 ℃. The retrieved cathode active material was then obtained as high purity after calcining at 800 ℃ to remove residual carbon. Based on this study, it was found that rare metals such as Co, Ni, Mn and Li made up of cathode active material could recover above 80% from aluminum thin film.

Characteristics of Copper Vanadium Oxide$(Cu_{0.5}V_2O_5)$ Cathode for Thin Film Microbattery (구리-바나듐 산화물 박막의 양극 특성 및 전 고상 전지의 제작)

  • Lim Y. C.;Nam S. C.;Park H. Y.;Yoon Y. S.;Cho W. I.;CHo B. W.;Chun H. S.;Yun K. S.
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.4
    • /
    • pp.219-223
    • /
    • 2000
  • All-solid state lithium rechargeable thin film batteries were fabricated with the configuration of$Cu_{0.5}V_2O_5/Lipon/Li$ using sequential thin film techniques. Copper vanadium oxide thin films and Lipon thin films were prepared by DC reactive dual source magnetron sputtering and RF magnetron sputtering, respectively. According to XRD analysis, we found out that copper vanadium oxide thin films were amorphous. The electrochemical behaviour of them was examined in half cell system using EC : DMC(1:1 in IM $LiPF_5$) liquid electrolyte. The ionic conductivity of Lipon thin film was $1.02\times10^{-6}S/cm$ at $25^{\circ}C$ and $Cu_{0.5}V_2O_5/Lipon/Li$ cell showed that the discharge capacity was about $50{\mu}Ah/cm^2{\mu}m$ beyond 500cyc1es.

Fabrication and Electrochemical Characterization of All Solid State Thin Film Micro-Battery by in-situ sputtering (In-situ 스퍼터링을 이용한 마이크로 박막 전지의 제작 및 전지 특성 평가)

  • 전은정;신영화;남상철;조원일;손봉희;윤영수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.159-162
    • /
    • 1999
  • All solid state thin film micro-batteries consisting of lithium metal anode, an amorphous LiPON electrolyte and cathode of vanadium oxide have been fabricated and characterized, which were fabricated with cell structure of Li/LiPON/V$_2$O$\sub$5/Pt. The vanadium oxide thin films were formed by d.c. reactive sputtering on Pt current collector. After deposition of vanadium oxide films, in-situ growths of lithium phosphorus oxynitride film were conducted by r.f. sputtering of Li$_3$PO$_4$ target in mixture gas of N$_2$ and O$_2$. The pure metal lithium film was deposited by thermal evaporation on thin film LiPON electrolyte. The cell capacity was about 45${\mu}$Ah/$\textrm{cm}^2$ $\mu\textrm{m}$ after 200 cycle. No appreciable degradation of the cell capacity could be observed after 50 cycles .

  • PDF

Charge/Discharge Characteristics of $SnO_2$ thin film as an anode of thin film secondary battery for microelectromechanical system device (Microelectromechnical system 소자를 위한 박막형 2차전지용 $SnO_2$ 음극박막의 충방전 특성 평가)

  • 남상철;조원일;전은정;신영화;윤영수
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.1
    • /
    • pp.36-41
    • /
    • 2000
  • $SnO-2$ thin films for thin film secondary battery anode were deposited n glass substrate with stain-less steel collector and charge/discharge experiments were conducted to investigate feasibility of $SnO-2$ thin film as a new anode material. The as-deposited films were pure $SnO-2$ phase which is not related to deposition condition. The grain size on the surface of as-deposited films increased with increase of oxygen partial pressure. However, the grain size did not show any change above oxygen partial pressure of 80:20. The surface roughness of the as-deposited films increased after decreasing because of resputtering effect of oxygen negative ion in plasma. All films showed typical $SnO-2$ anode characteristics which has a side effect at the first cycle, which is not related to the deposition condition. The charge/discharge experiments of 200cycles indicated that capacity of $SnO-2$ films depended on oxygen contents and surface roughness. The cycle characteristics was determined by initial charge/discharge reaction. The $SnO-2$ film with low initial capacity showed more stable cycle characteristics than film with high initial capacity.

  • PDF

Fabrication of Nano-Channeled Tin Oxide Film Electrode and Evaluation of Its Electrochemical Properties (나노 채널 구조를 가진 산화 주석 박막 전극 제조 및 전기화학적 특성 평가)

  • Park, Su-Jin;Shin, Heon-Cheol
    • Korean Journal of Materials Research
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • Thin film electrode consisting purely of porous anodic tin oxide with well-defined nano-channeled structure was fabricated for the first time and its electrochemical properties were investigated for application to an anode in a rechargeable lithium battery. To prepare the thin film electrode, first, a bi-layer of porous anodic tin oxides with well-defined nano-channels and discrete nano-channels with lots of lateral micro-cracks was prepared by pulsed and continuous anodization processes, respectively. Subsequent to the Cu coating on the layer, well-defined nano-channeled tin oxide was mechanically separated from the specimen, leading to an electrode comprised of porous tin oxide and a Cu current collector. The porous tin oxide nearly maintained its initial nano-structured character in spite of there being a series of fabrication steps. The resulting tin oxide film electrode reacted reversibly with lithium as an anode in a rechargeable lithium battery. Moreover, the tin oxide showed far more enhanced cycling stability than that of powders obtained from anodic tin oxides, strongly indicating that this thin film electrode is mechanically more stable against cycling-induced internal stress. In spite of the enhanced cycling stability, however, the reduction in the initial irreversible capacity and additional improvement of cycling stability are still needed to allow for practical use.

Surface Modification of Li Metal Electrode with PDMS/GO Composite Thin Film: Controlled Growth of Li Layer and Improved Performance of Lithium Metal Battery (LMB) (PDMS/GO 복합체 박막의 리튬 금속 표면 개질: 리튬전극의 성장 제어 및 리튬금속전지(LMB) 성능 향상)

  • Lee, Sanghyun;Seok, Dohyeong;Jeong, Yohan;Sohn, Hiesang
    • Membrane Journal
    • /
    • v.30 no.1
    • /
    • pp.38-45
    • /
    • 2020
  • Although Lithium metal battery (LMB) has a very large theoretical capacity, it has a critical problem such as formation of dendrite which causes short circuit and short cycle life of the LMB. In this study, PDMS/GO composite with evenly dispersed graphene oxide (GO) nanosheets in poly (dimethylsiloxane) (PDMS) was synthesized and coated into a thin film, resulting in the effect that can physically suppress the formation of dendrite. However, PDMS has low ion conductivity, so that we attained improved ion conductivity of PDMS/GO thin film by etching technic using 5wt% hydrofluoric acid (HF), to facilitate the movement of lithium (Li) ions by forming the channel of Li ions. The morphology of the PDMS/GO thin film was observed to confirm using SEM. When the PDMS/GO thin film was utilized to lithium metal battery system, the columbic efficiency was maintained at 87.4% on average until the 100th cycles. In addition, voltage profiles indicated reduced overpotential in comparison to the electrode without thin film.

Design and Implementation of Power Management Circuit for Semi-active RFID Tags (반 능동형 RFID 태그를 위한 전원 제어 회로 설계 및 구현)

  • Kim, Yeong-Kyo;Yi, Kyeon-Gil;Cho, Sung-Kyo;Nam, Ki-Hun;Kim, Shi-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1839-1844
    • /
    • 2010
  • A power management controller circuit with switched capacitor mode down regulator and battery charger block for semi-active RFID tags was proposed and fabricated. The main purposes of the proposed switched capacitor mode down regulator and battery charger block are to reduce standby current and to provide a self-controlled thin film battery charger by detecting the received RF power, respectively. Fabricated chip area is $360,000{\mu}m^2$ and measured standby current was about $1.3{\mu}A$. To further reduction of standby current, a wake-up circuit has to be included in the power management controller.