Browse > Article
http://dx.doi.org/10.5012/jkcs.2019.63.6.440

Safe Decomposition of the Vehicle Waste Battery Module and Development of Separation Process of Cathode Active Material from Aluminum Thin Film  

Kim, Younjung (Center for Instrumental Analysis, Andong National University)
Oh, In-Gyung (Department of Applied Chemistry, Andong National University)
Hong, Yong Pyo (Department of Applied Chemistry, Andong National University)
Ryoo, Keon Sang (Department of Applied Chemistry, Andong National University)
Publication Information
Abstract
It has developed a method that can recover efficiently the reproducible resources from the vehicle waste lithium second battery module. Module cell consists of copper thin film, aluminum thin film and diaphragm made with polymer between these thin films. Cell was disassembled completely without any damage in glove box and through several steps. Preferentially, cathode active material was separated from aluminum thin film at heat treatment of 400 ℃. The retrieved cathode active material was then obtained as high purity after calcining at 800 ℃ to remove residual carbon. Based on this study, it was found that rare metals such as Co, Ni, Mn and Li made up of cathode active material could recover above 80% from aluminum thin film.
Keywords
Vehicle waste lithium second battery module; Cathode active material; Module cell; Aluminum thin film; Rare metal;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Guo, Y.; Li, F.; Zhu, H.; Li, G.; Huang, J.; He, W. Waste Management 2016, 51, 227.   DOI
2 Swain, B.; Jeong, J.; Lee, J. C.; Lee, G. H.; Sohn, J. S. J. Power Sources 2007, 167, 536.   DOI
3 Chen, X.; Ma, H.; Luo, C.; Zhou, T. Journal of Hazardous Materials 2017, 326, 77.   DOI
4 Wang, M.; Zhang, C.; Zhang, F. Waste Management 2016, 51, 239.   DOI
5 Sun, L.; Qiu, K. Waste Management 2012, 32, 1575.   DOI
6 Zhao, J. M.; Shen, X. Y.; Deng, F. L.; Wang, F. C.; Wu, Y.; Liu, H. Z. Separation and Purification Technology 2011, 78, 345.   DOI
7 Wang, R.; Lin, Y.; Wu, S. Hydrometallurgy 2009, 99, 194.   DOI
8 Sun, L.; Qiu, K. Journal of Hazardous Materials 2011, 194, 378.   DOI
9 Paulino, J. F.; Busnardo, N. G.; Afonso, J. C. Journal of Hazardous Materials 2008, 150, 843.   DOI
10 Zhu, S.; HE, W.; LI, G.; Zhou, Xu.; Zhang X.; Huang, J. Trans. Nonferrous Met. Soc. China 2012, 22, 2274.   DOI
11 Ordonez, J.; Gago, E. J.; Girard, A. Renewable and Sustainable Energy Reviews 2016, 60, 195.   DOI
12 Wang, M. M.; Zhang, C. C.; Zhang, Fu. S. Waste Management 2016, 51, 239.   DOI
13 Nayaka, G. P.; Pai, K. V.; Santhosh, G.; Manjanna, J. Hydrometallurgy 2016, 161, 54.   DOI
14 Nayaka, G. P.; Pai, K. V.; G. Santhosh, J. Journal of Environmental Chemical Engineering 2016, 4, 2378.   DOI
15 Li L.; Dunn, J. B.; Zhang, X. X.; Gaines, L.; Chen, R. J.; Wu, F.; Amine, K. Journal of Power Sources 2013, 233, 180.   DOI
16 Joo, S. H.; Shin, D. J.; Oh, C. H.; Wang, J. P.; Senanayake, G.; Shin, S. M. Hydrometallurgy 2016, 159, 65.   DOI
17 Virolainen, S.; Fini, M. F.; Laitinen, A.; Sainio, T. Separation and Purification Technology 2017, 179, 274.   DOI