• Title/Summary/Keyword: Thin electrode

Search Result 1,276, Processing Time 0.033 seconds

Preparation AZO(ZnO:Al) thin film for FBAR by FTS method (대향타겟스퍼터링법에 의한 FBAR용 AZO(ZnO:Al) 전극의 제작)

  • Keum, M.J.;Shin, S.K.;Ga, C.H.;Chu, S.N.;Kim, K.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.172-175
    • /
    • 2003
  • ZnO:Al thin film for application to FBAR's bottom electrode using ZnO piezoelectric thin film were prepared by FTS, in order to improve the crystallographic properties of ZnO thin films because the ZnO:Al thin film and ZnO thin films structure is equal each other. So we prepared the ZnO:Al thin film with oxygen gas flow rate. Thickness and c-axis preferred orientation and electric properties of ZnO:Al bottom electrode were evaluated by $\alpha$-step, XRD and 4-point probe..

  • PDF

Effect of RuO$_2$ Thin Film Microstructure on Characteristics of Thin Film Micro-supercapacitor ($RuO_2$박막의 미세 구조가 박막형 마이크로 슈퍼캐패시터의 특성에 미치는 영향)

  • Kim, Han-Ki;Yoon, Young-Soo;Lim, Jae-Hong;Cho, Won-Il;Seong, Tae-Yeon;Shin, Young-Hwa
    • Korean Journal of Materials Research
    • /
    • v.11 no.8
    • /
    • pp.671-678
    • /
    • 2001
  • All solid-state thin film micro supercapacitor, which consists of $RuO_2$/LiPON/$RuO_2$ multi layer structure, was fabricated on Pt/Ti/Si substrate using a $RuO_2$ electrode. Bottom $RuO_2$ electrode was grown by dc reactive sputtering system with increasing $O_2/[Ar+O_2]$ ratio at room temperature, and a LiPON electrolyte film was subsequently deposited on the bottom $RuO_2$ electrode at pure nitrogen ambient by rf reactive sputtering system. Room temperature charge-discharge measurements based on a symmetric $RuO_2$/LiPON/$RuO_2$ structure clearly demonstrates the cyclibility dependence on the microstructure of the $RuO_2$ electrode. Using both glancing angle x-ray diffraction (GXRD) and transmission electron microscopy (TEM) analysis, it was found that the microstructure of the $RuO_2$ electrode was dependent on the oxygen flow ratio. In addition, x- ray photoelectron spectroscopy(XPS) examination shows that the Ru-O binding energy is affected by increasing oxygen flow ratio. Furthermore, TEM and AES depth profile analysis after cycling demonstrates that the interface layer formed by interfacial reaction between LiPON and $RuO_2$ act as a main factor in the degradation of the cyclibility of the thin film micro-supercapacitor.

  • PDF

Research on the Multi-electrode Plasma Discharge for the Large Area PECVD Processing

  • Lee, Yun-Seong;You, Dae-Ho;Seol, You-Bin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.478-478
    • /
    • 2012
  • Recently, there are many researches in order to increase the deposition rate (D/R) and improve film uniformity and quality in the deposition of microcrystalline silicon thin film. These two factors are the most important issues in the fabrication of the thin film solar cell, and for the purpose of that, several process conditions, including the large area electrode (more than 1.1 X 1.3 (m2)), higher pressure (1 ~ 10 (Torr)), and very high frequency regime (VHF, 40 ~ 100 (MHz)), have been needed. But, in the case of large-area capacitively coupled discharges (CCP) driven at frequencies higher than the usual RF (13.56 (MHz)) frequency, the standing wave and skin effects should be the critical problems for obtaining the good plasma uniformity, and the ion damage on the thin film layer due to the high voltage between the substrate and the bulk plasma might cause the defects which degrade the film quality. In this study, we will propose the new concept of the large-area multi-electrode (a new multi-electrode concept for the large-area plasma source), which consists of a series of electrodes and grounds arranged by turns. The experimental results with this new electrode showed the processing performances of high D/R (1 ~ 2 (nm/sec)), controllable crystallinity (~70% and controllable), and good uniformity (less than 10%) at the conditions of the relatively high frequency of 40 MHz in the large-area electrode of 280 X 540 mm2. And, we also observed the SEM images of the deposited thin film at the conditions of peeling, normal microcrystalline, and powder formation, and discussed the mechanisms of the crystal formation and voids generation in the film in order to try the enhancement of the film quality compared to the cases of normal VHF capacitive discharges. Also, we will discuss the relation between the processing parameters (including gap length between electrode and substrate, operating pressure) and the processing results (D/R and crystallinity) with the process condition map for ${\mu}c$-Si:H formation at a fixed input power and gas flow rate. Finally, we will discuss the potential of the multi-electrode of the 3.5G-class large-area plasma processing (650 X 550 (mm2) to the possibility of the expansion of the new electrode concept to 8G class large-area plasma processing and the additional issues in order to improve the process efficiency.

  • PDF

Fabrication and Characterization of Organic Thin-Film Transistors by Using Polymer Gate Electrode (고분자 게이트 전극을 이용한 유기박막 트랜지스터의 제조 및 소자성능에 관한 연구)

  • Jang, Hyun-Seok;Song, Ki-Gook;Kim, Sung-Hyun
    • Polymer(Korea)
    • /
    • v.35 no.4
    • /
    • pp.370-374
    • /
    • 2011
  • A conductive PANI solution was successfully fabricated by doping with camphorsulfonic acid and the polymerization of aniline and the confirmation of doping were characterized by FTIR spectroscopy. In organic thin film transistors, PANI gate electrodes were spin-coated on a PES substrate and their conductivity variations were monitored by a 4-probe method with different annealing temperatures. The surface properties of PANI thin films were investigated by an AFM and an optical microscope, OTFTs with PANI gate electrode had characteristics of carrier mobility as large as 0.15 $cm^2$/Vs and on/off ratio of $2.4{\times}10^6$, Au gate OTFTs with the same configuration were fabricated to investigate the effect of polymer gate electrode for the comparison of device performances. We could obtain the comparable performances of PANI devices to those of Au gate devices, resulting in an excellent alternative as an electrode in flexible OTFTs instead of an expensive Au electrode.

The effects of the composition and the lower electrode on the properties of PZT thin films prepared by Sol-Gel method (Sol-Gel 법으로 제작된 PZT 박막의 전기적 성질에 조성과 하부전극이 미치는 영향)

  • 이정기;윤영섭
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.7
    • /
    • pp.77-84
    • /
    • 1995
  • We studied the effects of the Zr/Ti ration and the bottom electrode (Pt or ITO) on the electrical properties of PZT thin films prepared by sol-gel method. Their permittivities and tagent losses with the variation of frequencies were measured by the LCR meter and their maximum polarizations, remanent polarizations, and coercive fields were obtained from the hysteresis loops measured by the Sawyer-Tower circuit. For the PZT thin film of the Zr/Ti ration of 53/47, permittivity at 10kHz, coercive field, maximum and remanent polarizations ere measured as 952, 20.7kV/cm, 10.43${\mu}C/cm^{2}$ and 4.3${\mu}C/cm^{2}$, respectively. For the film of the Zr/Ti ration of 25/75, coercive field, maximum and remanent polarizations were measured as 33.12kV/cm, 5.59${\mu}C/cm^{2}$ and 1.5${\mu}C/cm^{2}$, respectively. For the film of the Zr/Ti ratio of 75/25, they were measured as 23.8kV/cm, 7.45${\mu}C/cm^{2}$, and 3.5${\mu}C/cm^{2}$, repectively. Our investigation into the effects of the lower electrode on the electrical properties of PZT films showed the following results. The permittivities of the PZT films deposited on the ITO electrode decreased more quickly than those of the PZT films on the Pt electrode. The tangent losses of the former films increased more quickly than those of the latter. These may be due to the degradation of the quality of the interface between the electrode and the film, which results from the diffusion of Pb. It is also noticeable that permittivities and tangent losses of the PZT films deposited on the ITO electrode varied differently with the Zr/Ti ratio. This may indicate that the quality of the interface between the electrode and the film changes with the Zr/Ti ration of the PZT film.

  • PDF

Effect of WSi$_2$ Gate Electrode on Thin Oxide Properties in MOS Device (MOS 소자에서 WSi$_2$ 게이트 전극이 Thin Oxide 성질에 미치는 영향)

  • 박진성;이현우;김갑식;문종하;이은구
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.3
    • /
    • pp.259-263
    • /
    • 1998
  • WSi2/CVD-Si/SiO2/Si-substrate의 폴리사이드 구조에서 실리콘 증착 POCl3 확산 그리고 WSi2 증착 유무에 따른 Thin oxide 특성을 연구했다 WSi2 막을 증착하지 않은 CVD-Si/SiO2/Si-substrate 구조에서 CVD-Si을 po-lycrystalline-Si으로 증착한 시편이 amorphous-Si을 증착한 시편보다 산화막 불량이 적다 WSi2 를 증착시킨 WSi2/CVD-Si/SiO2./Si-substrate의 구조에서 CVD-Si의 polycrystalline-Si 혹든 amorphous-Si 의 막 증착에 따른 thin oxide의 불량율 차이는 미미하다 산화막 불량은 CVD-Si에 확산시킨 인(P) 증가 즉 면저항(sheet resistance) 감소로 증가한다. Thin oxide의 절연특성은 WSi2 증착으로 저하된다 WSi2 증착으로 산화막 두께는 증가하나 막 특성은 열등해져 산화막 절연성이 떨어진다.

  • PDF

Characterization of thin film Si solar cell with FTO transparent electrode (FTO 투명전극에 따른 박막 실리콘 태양전지 특성평가)

  • Kim, S.H.;Kim, Y.J.;No, I.J.;Cho, J.W.;Lee, N.H.;Kim, J.S.;Shin, P.K.
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1351_1352
    • /
    • 2009
  • We deposited $SnO_2$:F thin films by atomospheric pressure chemical vapor deposition(APCVD) on corning glass. $SnO_2$:F films were used as transparent conductive oxide (TCO) electrode for Si thin film solar cells. We have investigated structural, electrical and optical properties of $SnO_2$:F thin films and fabricated thin film Si solar cells by plasma enhanced CVD(PECVD) on $SnO_2$:F thin films The cells were characterized by I-V measurement using AM1.5 spectra. Conversion efficiency of our cells were between 5.61% and 6.45%.

  • PDF

Fabrication of NiS Thin Films as Counter Electrodes for Dye-Sensitized Solar Cells using Atomic Layer Deposition

  • Jeong, Jin-Won;Kim, Eun-Taek;Park, Su-Yong;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.276.2-276.2
    • /
    • 2016
  • Dye-sensitized solar cells (DSCs) are promising candidates for light-to-energy conversion devices due to their low-cost, easy fabrication and relative high conversion efficiency. An important component of DSCs is counter electrode (CE) collect electrons from external circuit and reduct I3- to I-. The conventional CEs are thermally decomposed Pt on fluorine-doped tin oxide (FTO) glass substrates, which have shown excellent performance and stability. However, Pt is not suitable in terms of cost effect. In this report, we demonstrated that nickel sulfide thin films by atomic layer deposition (ALD)-using Nickel(1-dimethylamino-2-methyl-2-butanolate)2 and hydrogen sulfide at low temperatures of $90-200^{\circ}C$-could be good CEs in DSCs. Notably, ALD allows the thin films to grow with good reproducibility, precise thickness control and excellent conformality at the angstrom or monolayer level. The nickel sulfide films were characterized using X-ray photoelectron spectroscopy, scanning electron microscopy, X-ray diffraction, hall measurements and cyclic voltammetry. The ALD grown nickel sulfide thin films showed high catalytic activity for the reduction of I3- to I- in DSC. The DSCs with the ALD-grown nickel sulfide thin films as CEs showed the solar cell efficiency of 7.12% which is comparable to that of the DSC with conventional Pt coated counter electrode (7.63%).

  • PDF

The Study of formation of LiCoO$_2$thin film electrode by RF-MSP (RF-MSP에 의한 LiCoO$_2$박막전극의 형성에 관한 연구)

  • 김상필;이우근;김익수;하홍주;박정후;조정수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.167-170
    • /
    • 1995
  • LiCoO$_2$is a electrode material of Li ion Cell which is expected as the cell with a very high electric charge density. The recent study is mainly to focused on a high power secondary cell. If very thin Li ion Cell can be made in the scale of IC substrate it can be a electric souse in IC chip , micro machine or very thin electrical display etc. LiCoO$_2$thin film can be made by CVD, Laser ablation, E-Beam, ton Beam process, sputtering etc. But to make the material with a high quality for a cell is difficult as the electrode in cell have the fitable ratio in components and a lattice structure of bulk etc. In this study, LiCoO$_2$is made by R.F magnetron sputtering with the variance of substrate temperature and oxygen partial pressure etc. In the substrate temperature of 600$^{\circ}C$ and the oxygen rate of 10%, we can acquire the good thin film LiCoO$_2$compared wish a bulk material.

  • PDF

Ruthenium Thin Films Grown by Atomic Layer Deposition

  • Shin, Woong-Chul;Choi, Kyu-Jeong;Jung, Hyun-June;Yoon, Soon-Gil;Kim, Soo-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.12-12
    • /
    • 2008
  • Ruthenium is one of the noble metals having good thermal and chemical stability, low resistivity, and relatively high work function(4.71eV). Because of these good physical, chemical, and electrical properties, Ru thin films have been extensively studied for various applications in semiconductor devices such as gate electrode for FET, capacitor electrodes for dynamic random access memories(DRAMs) with high-k dielectrics such as $Ta_2O_5$ and (Ba,Sr)$TiO_3$, and capacitor electrode for ferroelectric random access memories(FRAMs) with Pb(Zr,Ti)$O_3$. Additionally, Ru thin films have been studied for copper(Cu) seed layers for Cu electrochemical plating(ECP) in metallization process because of its good adhesion to and immiscibility with Cu. We investigated Ru thin films by thermal ALD with various deposition parameters such as deposition temperature, oxygen flow rate, and source pulse time. Ru thin films were grown by ALD(Lucida D100, NCD Co.) using RuDi as precursor and $O_2$ gas as a reactant at 200~$350^{\circ}C$.

  • PDF