• Title/Summary/Keyword: Thin Steel Sheet

Search Result 81, Processing Time 0.02 seconds

Thin Steel Sheet Roll Forming and Load Analysis (박판강대의 롤성형 및 부하 분석)

  • 서정현
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.273-279
    • /
    • 1999
  • In this paper the stress and strain behaivor in near homogeneous isotropic matrix of metal like steel was studied roll forming of thin steel sheet for cylindrical pipe. Analytical results reveals a body which is on the area of square thickness along and perpendicular to the width of thin steel sheet is in the state of plane strain during roll forming. As a result construction of analytical method for calculating deformation load and stably deformed length along the width of strained steel sheet was established. Also loads applied during roll forming were analyzed using two typical thin steel sheet 12.3m thick steel sheet with 42.5kg /mm2 yield strength of pipe and 5.3mm thick steel sheet with 32.5kg/mm2 yield strength of pipe. Through this analysis applicability of the analytical method for deformation load during roll forming of cylindrical thin steel pipe was evaluated with a study of necessary production technology for roll forming and design technology for roll forming machine.

  • PDF

Thin Steel Sheet Roll Forming and Load Analysis (박판 강대의 롤성형 및 부하 분석)

  • 서정현
    • Transactions of Materials Processing
    • /
    • v.8 no.6
    • /
    • pp.554-562
    • /
    • 1999
  • In this paper, the stress and strain behavior in near homogeneous isotropic matrix of metal like steel was studied during roll forming of thin steel sheet for cylindrical pipe. Analytical result reveals a body which is on the area of square thickness along and perpendicular to the width of thin steel sheet is in the state of plane strain during roll forming. As a result, construction of analytical method for calculating deformation load and stably deformed length along the width of strained steel sheet was established. Also, loads applied during roll forming were analyzed using two typical thin steel sheets. 12.3mm thick steel sheet with 42.5kg/㎟ yield strength of pipe and 5.3mm thick steel sheet with 32.5kg/㎟ yield strength of pipe. Through this analysis, applicability of the analytical method for deformation load during roll forming of cylindrical thin steel pipe was evaluated with a study of necessary production technology for roll forming and design technology for roll forming machine.

  • PDF

A Study on the $CO_2$ Laser Beam Welding of Thin Steel Sheets and Tailored Blanks - Between Similar Thin Sheet Materials - (박판의 $CO_2$레이저 빔 용접과 소재접합일체성형에 관한 연구- 동질 박판재간 -)

  • 이희석;배동호
    • Journal of Welding and Joining
    • /
    • v.15 no.2
    • /
    • pp.54-63
    • /
    • 1997
  • For the purpose of establishing laser welding condition (laser power, welding speed and beam focus) and of evaluating tailored blanks for two kinds of thin steel sheets SPCC and SK5M using in the thin plate structure such as automobile, train, and so on, investigated their $CO^2$ laser weldability under various initial welding conditions. SPCC thin sheet showed good weldability under some welding conditions. But, high carbon steel sheet SK5M needed heat treatment after welding to obtain ductility of the welded joint. And next, tailored blank was tested through deep drawing to evaluate reliability of their obtained laser welding conditions. The forming depths by tailored blank were SPCC+SPCC=22-25mm and SK5M+SK5M=13-25mm.

  • PDF

Analysis of Bending Behavior of Ultra-thin SS304 Stainless Steel Sheets Considering the Surface Effect (표면 효과를 고려한 극박 SS304 스테인리스 강판의 굽힘 거동 분석)

  • Jung, J.;Chae, J.Y.;Chung, Y.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.29 no.6
    • /
    • pp.323-330
    • /
    • 2020
  • The surface region of a sheet metal may have different characteristics from the inner region because the surface region is less restricted than the interior. In addition, the grains on the free surface are less hardened because of surface adsorption of the dislocations, rather than piling up. In the case of bulk or thick sheet metals, this effect is negligible because the fraction of the surface region is much smaller than that of the inner region. However, this surface effect is important in the case of ultra-thin sheet metals. In order to evaluate the surface effect, tensile and bending tests were performed for the SS304 stainless steel with a thickness of 0.39 mm. The bending force predicted using the tensile behavior is higher than the measurement because of the surface effect. To account for the surface effect, the surface layer model was developed by dividing the sheet section into surface and inner layers. The mechanical behaviors of the two regions were calibrated using the tensile and bending properties. The surface layer model reproduced the bending behavior of the ultra-thin sheet metal.

Weldability of Low Carbon Steel with Al Coating Condition by Nd:YAG Laser (저탄소강의 알루미늄 도금조건에 따른 Nd:YAG 레이저 용접성)

  • Kim, Jong-Do;Lee, Jung-Han;Kim, Sook-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.736-743
    • /
    • 2007
  • Laser welding has the advantage of high welding speed and Provides low heat distortion Thus laser welding is a very attractive process for joining thin steel sheet and surface treated steel sheet. And the major item in market for surface treated steel sheet is zinc coated steel. However. the laser welding of zinc coated steel is very difficult because of its low boiling point. Compared with zinc, on the other hand, aluminum has a high boiling point. Thus, laser weldability of aluminized steel is better than that of zinc coated steel. Moreover aluminized steel sheet is a material with excellent heat resistance, thermal reflection and corrosion resistance. The results of laser weldability of the aluminized steel for the full penetration welding will be described in this paper We focused on the investigation of the phenomenons caused by coating condition and behavior of aluminum in weld.

Analysis of Formability and Wrinkle Formation according to the Thickness of Ultra-thin Stainless Steel in the Incremental Sheet forming Process (점진적 판재 성형 공정에서 스텐리스 극박판의 두께에 따른 성형성 및 주름 발생 특성 분석)

  • Lee, J.H.;Lee, G.I.;Jeong, M.S.;Jung, K.S.;Lee, C.W.
    • Transactions of Materials Processing
    • /
    • v.28 no.6
    • /
    • pp.328-335
    • /
    • 2019
  • Demand for ultra-thin materials is increasing due to their light-weight and versatile properties. In this work, the formability of the ultra-thin stainless steel sheets of various thicknesses in the incremental sheet forming (ISF) process is investigated. The effects of the thickness on formability were evaluated with forming experiments of the truncated cone shape with 10° intervals. As the thickness of the material decreased, the maximum forming angle decreased and wrinkles also occurred quickly. The maximum forming angles in the truncated cone shape without the wrinkles for the thickness of 0.05 mm, 0.08 mm, and 0.1mm were 30°, 40°, and 50°, respectively. Wrinkles occurred in a twisted shape along the moving direction of the tool. As the material thickness increased, the size of the wrinkles increased.

A Study on the Laser Weldability of Aluminized Steel Sheet with Coating Condition (도금조건에 따른 알루미늄도금강판의 레이저 용접성에 관한 연구)

  • Kim, Jong-Do;Lee, Jung-Han
    • Laser Solutions
    • /
    • v.10 no.4
    • /
    • pp.7-12
    • /
    • 2007
  • The aluminized steel sheet exhibits excellent resistance to oxidation and corrosion, and can substitute for stainless steel or heat-resisting steel in some situations. Furthermore it has wide applications, owing to its low cost and excellent performance, in the petrochemical industry, electric power, other energy conversion system, etc. and has attracted the attention of many investigators. Laser welding is a remarkably advantageous method for welding of thin sheets and surface-treated steel sheets since the method requires less heat input, and it is suitable for high-speed welding. In this study, thus, the laser weldability of aluminized steel sheet was investigated. As the result from the study, there is an Al-rich zone in a welded part which has decreased the welding strength due to the intermetallic compounds in the Al-rich zone.

  • PDF

Numerical Simulation for a Multi-Stage Deep Drawing of Anisotropic SUS409L Sheet into a Rectangular Cup (초기 이방성 SUS409L 박판재의 직사각 컵 성형을 위한 다단 디프드로잉 공정 적용에 관한 수치적 연구)

  • Park, J.W.;Ku, T.W.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.22 no.3
    • /
    • pp.133-142
    • /
    • 2013
  • Recently, electric vehicles and hybrid cars are being promoted as alternatives to reduce automobile emissions. Generally, thin sheet materials such as aluminum alloy AA300X and cold-rolled steel sheet such as JIS-G-3141 are used for the container for the lithium-ion secondary batteries. In this study, a multi-stage deep drawing process is used to produce a rectangular cup from thin stainless steel sheet material, SUS409L, with an initial blank thickness of 0.4mm for the battery container application. Numerical simulations of the first through the fifth stages for the multi-stage deep drawing with thin SUS409L sheet were conducted using LS-Dyna3D Implicit/Explicit. Special consideration was given to the deformation characteristics due to the normal anisotropy of the sheet material. The numerical simulations were conducted with both isotropic properties and the anisotropic properties of the initial blank material. An unexpected forming failure, barreling in the bottom region of the deep drawn rectangular cup, was observed. This failure mode can be avoided by additional ironing thickness control during the process.

A comparative study of experiment and analysis of sheet matal in V-bending (V-벤딩 금형에서 박판 소재의 실험과 해석을 통한 스프링 백 비교 고찰)

  • Jeong, Gyun-Min;Choi, Kye-Kwang
    • Design & Manufacturing
    • /
    • v.15 no.1
    • /
    • pp.21-25
    • /
    • 2021
  • When the product is removed from the mold after molding during the sheet metal molding process, elastic recovery causes a springback phenomenon. Much research has been done to minimize this phenomenon. In this study, V-bending experiments were conducted using galvanized steel sheets, stainless steel, and aluminum sheet materials, using a total of nine types of thin sheet materials of 1.0t, 1.5t, and 2.0t, respectively. Molding analysis and experimental data were compared and analyzed. In the case of galvanized steel sheets, it was considered that the springback phenomenon occurs more frequently in molding analysis than in experiments. It was considered that the springback phenomenon occurs greatly in the experiment, not the interpretation of the molding of the stainless steel plate and the aluminum plate. It was considered that the springback occurrence tendency of the molding analysis and the experiment was the same, and the springback occurrence error rate of the molding analysis and the experimental result was about 4.0%.