• Title/Summary/Keyword: Thickness mode

Search Result 1,138, Processing Time 0.026 seconds

Design of a Sliding Mode controller with Self-tuning Boundary Layer (경계층이 자동으로 조정되는 슬라이딩 모우드 제어기의 설계)

  • 최병재;곽성우;김병국
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.3-12
    • /
    • 1996
  • Sliding mode controller(SMC) is a simple but powerful nonlinear controller, because it guarantees the stability and the robustness. However, it leads to the high frequency chattering of the control input. Although the phenomenon can be avoided by introducing a thin boundary layer to the sliding surface, the method results in a steady state: error proportional to the boundary layer thickness. In this paper, we proposed a new sliding mode controller with self-tuning the thickness of a boundary layer. It uses a fuzzy rule base for tuning the thickness of a boundary layer. That is, the thickness is increased to some degree to reject a discontinuous control input at the initial state and then it is decreased as the states approaches to the steady states for improving the tracking performance. In order to assure the control performance, we perf'ormed the computer simulation using an inverted pendulum system as a controlled plant.

  • PDF

Thickness and Surface Measurement of Transparent Thin-Film Layers using White Light Scanning Interferometry Combined with Reflectometry

  • Jo, Taeyong;Kim, KwangRak;Kim, SeongRyong;Pahk, HeuiJae
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.236-243
    • /
    • 2014
  • Surface profiling and film thickness measurement play an important role for inspection. White light interferometry is widely used for engineering surfaces profiling, but its applications are limited primarily to opaque surfaces with relatively simple optical reflection behavior. The conventional bucket algorithm had given inaccurate surface profiles because of the phase error that occurs when a thin-film exists on the top of the surface. Recently, reflectometry and white light scanning interferometry were combined to measure the film thickness and surface profile. These techniques, however, have found that many local minima exist, so it is necessary to make proper initial guesses to reach the global minimum quickly. In this paper we propose combing reflectometry and white light scanning interferometry to measure the thin-film thickness and surface profile. The key idea is to divide the measurement into two states; reflectometry mode and interferometry mode to obtain the thickness and profile separately. Interferogram modeling, which considers transparent thin-film, was proposed to determine parameters such as height and thickness. With the proposed method, the ambiguity in determining the thickness and the surface has been eliminated. Standard thickness specimens were measured using the proposed method. Multi-layered film measurement results were compared with AFM measurement results. The comparison showed that surface profile and thin-film thickness can be measured successfully through the proposed method.

Effect of Outdoor Temperature on the Refrigerant Behavior in the Compressor of a Heat Pump Operating at Heating Mode (열펌프의 난방운전시 외기온이 압측기의 냉매거동에 미치는 영향)

  • 이재효;김병균;이건우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.452-458
    • /
    • 2004
  • The major cause of compressor failure is the decrease of oil viscosity due to floodback. In most previous researches on the compressor reliability, the relationship between oil circulation rate and performance or oil viscosity has been studied. Another research topic is flow visualization by using a sight glass on the bottom of a compressor sump area and accumulator. Both oil film thickness and oil level through the sight glass should be assessed for compressor reliability if the oil content of the mixture is small and low viscosity raise poor lubrication of pump bearing. In this study, the compressor reliability was assessed by measuring the viscosity of the mixture and calculating oil film thickness. The analysis of the relationship between bottom shell super heat and oil film thickness at heating operation was peformed. It is concluded that bottom shell superheat does not perfectly stand for the mixture's behavior for a low ambient heating operation and oil film thickness can give more detailed and direct criteria for compressor reliability.

A Study on the Droplet Behavior Impacting on an Orifice (오리피스와 충돌하는 액적 거동에 관한 연구)

  • D.H., Seo;D.J., Lee;H.B., Lee;B.S., Kang
    • Journal of ILASS-Korea
    • /
    • v.27 no.4
    • /
    • pp.188-194
    • /
    • 2022
  • In this study, the behavior of water droplet impacting on a thin horizontal orifice was investigated. The impact behavior modes, transition velocities and diameters of daughter droplets were analyzed by changing the droplet velocity, orifice diameter and orifice thickness. Four typical modes of impacting droplet on an orifice were observed. The single-droplet and double-droplet transition velocities increased with increasing the orifice thickness and decreased with increasing the orifice diameter. On the other hand, the multi-droplet transition velocity decreased and then increased as the orifice diameter increased. At thin orifice thickness, the single droplet diameter approximated the orifice diameter, and increasing the orifice thickness produced a droplet larger than the orifice diameter. In the case of double droplet mode, the diameter of the first droplet showed a similar tendency like the single droplet mode, but the diameter of the second droplet was smaller than that of the first droplet, and the difference between them was affected more by the orifice thickness.

Evanescent-Mode Analysis of Short-Channel Effects in MOSFETs (Evanescent-Mode를 이용한 MOSFET의 단채널 효과 분석)

  • 이지영;신형순
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.10
    • /
    • pp.24-31
    • /
    • 2003
  • Short channel effects (SCE) of bulk MOSFET with super-steep retrograded channels (SSR), fully-depleted SOI, and double-gate MOSFET have been analyzed using a evanescent-mode analysis. Analytical equations of the characteristics scaling-length (λ) for three structures have been derived and the accuracy of the calculated λ was verified by comparing to the device simulation result. It is found that the minimum channel length should be larger than 5λ and the depletion thickness of the SSR should be around 30 nm in order to be applicable to 70 nm CMOS technology. High-$textsc{k}$ dielectric shows a limitation in scaling due to the drain-field penetration through the dielectric unless the equivalent SiO2 thickness is very thin.

An Experimental Study on the Strength Evaluation of A1-5052 Tensile-Shear Specimens Using a Mechanical Press Joining Method (기계적 프레스 접합법을 이용한 A1-5052 인장-전단 시험편의 강도 평가에 관한 실험적 연구)

  • 임두환;이병우;류현호;김호경
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.58-64
    • /
    • 2003
  • A mechanical press joining was investigated in ender for joining A1-5052 sheets for automobile body weight reduction. Static tensile and fatigue tests were conducted using tensile-shear specimens for evaluation of fatigue strength of the joint. During Tox joining process for A1-5052 plates, using the current sheet thickness and punch diameter, the optimal applied punching force was found to be 32 kN under the current joining condition. For the static tensile-shear experiment results, the fracture mode is classified into interface fracture mode, in which the neck area fractured due to influence of neck thickness, and pull-out fracture mode due to influence of plastic deformation of the joining area. And, during fatigue tests for the A1-5052 tensile shear specimens, interface failure mode occurred in the region of low cycle. The fatigue endurance limit approached to 6 percents of the maximum applied load, considering fatigue lifetime of $2.5\times10^6$ cycles.

A numerical investigation of the tensile behavior of the thread-fixed one-side bolted T-stubs at high temperature

  • You, Yang;Liu, Le;Jin, Xiao;Wang, Peijun;Liu, Fangzhou
    • Steel and Composite Structures
    • /
    • v.45 no.4
    • /
    • pp.605-619
    • /
    • 2022
  • The tensile behavior of the Thread-fixed One-side Bolt (TOB) at high temperatures was studied using the Finite Element Modeling (FEM) to explore the structural responses that could not be measured in tests. The accuracy of the FEM was verified using the test results from the failure mode, load-displacement curve as well as yielding load. Three typical failure modes of TOB connected T-stubs were observed, which were the Flange Yielding (FY), the Bolt Failure (BF) and the Coupling Failure mode (CF). The influence of the flange thickness tb and the temperature θ on the tensile behavior of the T-stub were discussed. The initial stiffness and the yielding load decreased with the increase of the temperature. The T-stubs almost lost their resistance when the temperature exceeded 700℃. The failure modes of T-stubs were mainly decided by the flange thickness, which relates to the anchorage of the hole threads and the bending resistance of flange. The failure mode could also be changed by the high temperature. Design equations in EN 1993-1-8 were modified and verified by the FEM results. The results showed that these equations could predict the failure mode and the yielding load at different temperatures with satisfactory accuracy.

Vibrational behaviour of higher-order cylindrical shells

  • Longjie Zhang
    • Advances in concrete construction
    • /
    • v.15 no.2
    • /
    • pp.137-147
    • /
    • 2023
  • Dynamic analysis of a shear deformable shell is investigated with accounting thickness stretching using Hamilton's principle. Through this method, the total transverse is composed into bending, shearing and stretching portions, in which the third part is responsible for deformation along the transverse direction. After computation of the strain, kinetic and external energies, the governing motion equations are derived using Hamilton's principle. A comparative study is presented before presentation of full numerical results for confirmation of the formulation and methodology. The results are presented with and without thickness stretching to show importance of the proposed theory in comparison with previous theories without thickness stretching.

A Study on the Revolution Characteristics of the Ultrasonic Motor with Windmill Type Structure (풍차형 구조를 갖는 초음파 전동기의 회전 특성에 관한 연구)

  • Kim, Jin-Su;Lee, Deok-Chul
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.10
    • /
    • pp.681-686
    • /
    • 1999
  • In this study, a windmill type ultrasonic motor operated by single-phase AC electric field was fabricated, and then revolution characteristics and 3-dimensional vibration mode of the ultrasonic motor were investigated. Brass metal was pressed with umbrella-type using metal mold, then slot of 4 kind was processed at various thickness. It was found that the revolution speed of the ultrasonic motor increased with decreasing the thickness of elastic body. The revolution speed of the ultrasonic motor increased with increasing the slots of elastic body. When the characteristics was measured, applied voltage was changed from $10V_{max}\; to\; 100V_{max}$. Then, revolution was began from $30V_{max}$, if voltage was applied over $90V_{max}$ revolution speed was saturated, and not increased. The maximum revolution speed was 510[rpm] when using elastic body with 6 slots and thickness of 0.15mm. And 3-dimensional displacement mode was rotated clockwise direction.

  • PDF

Parameter Tuning Algorithm for Sliding Mode Control (슬라이딩 모드 제어를 위한 인자 튜닝 알고리듬)

  • 류세희;박장현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.438-442
    • /
    • 2003
  • For an efficient sliding mode control system stability and chattering avoidance should be guaranteed. A continuation method using boundary layer is well known as one solution for this. However since not only model uncertainties and disturbances but also control task itself is variable. it is practically impossible to set controller parameters - control discontinuity, control bandwidth, boundary layer thickness - in advance. In this paper first an adaptation law of control discontinuity is introduced to assure system stability and then fuzzy logic based tuning algorithm of design parameters is applied based on monitored performance indices of tracking error, control chattering, and model precision. In the end maximum control bandwidth not exciting unmodeled dynamics and minimum control discontinuity, boundary layer thickness making system stable and free of chattering are found respectively. This eliminates control chattering and enhances control accuracy as much as possible under given control situation. In order to demonstrate the validity of the proposed algorithm safe headway maintenance control for autonomous transportation system is simulated. The control results show that the proposed algorithm guarantees system stability all the time and tunes control parameters consistently and in consequence implements an efficient control in terms of both accuracy and actuator chattering.

  • PDF