• Title/Summary/Keyword: Thickness increase

검색결과 3,236건 처리시간 0.032초

FFS 모드의 공통전극과 화소전극 사이의 절연층 두께에 따른 전기광학 특성 (Electro-Optic Characteristics of the Fringe Field Switching (FFS) Mode Depending on Thickness of Passivation Layer between Pixel and Common Electrodes)

  • 정준호;하경수;임영진;유일수;정연학;유재진;김경현;이승희
    • 한국전기전자재료학회논문지
    • /
    • 제22권7호
    • /
    • pp.589-594
    • /
    • 2009
  • We have studied electro-optic characteristics as a function of passivation thickness existing between common electrode and pixel electrodes in the fringe-field switching (FFS) mode using the LC with positive dielectric anisotropy. A steep increase in the transmission is observed with increase in the passivation layer from $0.29{\mu}m$ to $1.09{\mu}m$ and thereafter it almost saturates over the $1.09{\mu}m$ of passivation layer. This saturation is mainly associated with correlation between transmittance at the center region of pixel electrode and at the center region between pixel electrodes. From the results, optimal thickness of passivation layer can be defined.

전도성 스퍼터링 탄소전극을 사용한 TCO-less 염료감응형 태양전지의 특성에 관한 연구 (A Study on the TCO-less Dye-Sensitized Solar Cell Fabricated with Using Conductive Sputtering Carbon Electrodes)

  • 주용환;김남훈;박용섭
    • 한국전기전자재료학회논문지
    • /
    • 제29권11호
    • /
    • pp.725-728
    • /
    • 2016
  • We investigated the characterizations of carbon films fabricated by dual magnetron sputtering under various film thickness for the electrodes in TCO-less DSSC (dye-sensitized solar cells). Carbon films prepared at various conditions were exhibited smooth and uniform surfaces without defects. Also, the rms surface roughness of carbon films was decreased from 2.25 nm to 1.0 nm with the increase of film thickness. The sheet resistance as the electrical properties are improved from $11.2{\times}10^{-3}$ to $2.28{\times}10^{-3}$ with the increase of film thickness. In the results, the performance of TCO-less DSSC critically depended on the film thickness of working electrodes, indicating the conductivity of carbon films.

Thickness dependence of grain growth orientation in MgB2 films fabricated by hybrid physical-chemical vapor deposition

  • Ranot, Mahipal;Kang, W.N.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제15권2호
    • /
    • pp.9-11
    • /
    • 2013
  • We have investigated the effect of thickness of the MgB2 film on the grain growth direction as well as on their superconducting properties. $MgB_2$ films of various thicknesses were fabricated on c-cut $Al_2O_3$ substrates at a temperature of $540^{\circ}C$ by using hybrid physical-chemical vapor deposition (HPCVD) technique. The superconducting transition temperature ($T_c$) was found to increase with increase in the thickness of the $MgB_2$ film. X-ray diffraction analysis revealed that the orientation of grains changed from c-axis to a-axis upon increasing the thickness of the $MgB_2$ film from 0.6 to 2.0 ${\mu}m$. $MgB_2$ grains of various orientations were observed in the microstructures of the films examined by scanning electron microscopy. It is observed that at high magnetic fields the 2.0-${\mu}m$-thick film exhibit considerably larger critical current density ($J_c$) as compared to 0.6-${\mu}m$-thick film. The results are discussed in terms of an intrinsic-pinning in $MgB_2$ similarly as intrinsic-pinning occurring in high-Tc cuprate superconductors with layered structure.

Al의 양극처리에 관한 연구 (제1보) (전해조건이 피막에 미치는 영향) (Anodizing of Aluminium (Part1) (The effect on film by electrolytical conditions))

  • 이종남;이성주;김회정
    • 한국표면공학회지
    • /
    • 제1권1호
    • /
    • pp.14.1-18
    • /
    • 1967
  • The characteristics of sulfuric acid anodized layer was studied under various Conbitions, acid concentration : 5-20%, temperature : 5-25$^{\circ}C$, bath voltate : 16 volts , bath agitain : mech agitation : mechanical . The Al+++ ion increase in anodizing baty, the film thickness under microscope, the comparative porosity and the thickness were determined. It was found that film thickness and the porosithy which are the main factors of determining andoized layet quality, rule the corrosing and abrasiion tesistance of the film, and that the porosity is increasing in the outerlayer. The formation mechanism was assumed as follows : The film thickness -increase is due to OH_ ion diffusion into compact non-conductive layer and Al+ + OH_ \longrightarrowAl(OH), Al(OH)+ + OH_ \longrightarrowAl(OH)+$_2$ , Al(OH)+$_2$ + OH_ \longrightarrowAl(OH)$_3$., the strong adhesion force is alse due to Al(OH) or Al(OH)$_2$ in transtion layer. And the pore-nucleation is produced by volume change between Al and Al$_2$O$_3$ and activated H$_2$O gas created by large reaction heat of Al+(x) +OH_ \longrightarrowAl(OH)x.

  • PDF

Cu(Mg) alloy의 비저항에 영향을 미치는 인자에 대한 연구 (A study on the factors affecting Cu(Mg) alloy resistivity)

  • 조흥렬;조범석;이재갑;박원욱;이은구
    • 한국표면공학회지
    • /
    • 제32권6호
    • /
    • pp.695-702
    • /
    • 1999
  • We have explored the factors affecting the resistivity of Cu (Mg) alloy, which was prepared by sputtering. The results show that the resistivity is a function of Mg content, annealing temperature, annealing time, and Cu-alloy thickness. Addition of Mg to copper increases the resistivity through solute scattering. In addition, increasing Mg content promotes the interfacial reaction between Mg and SiO$_2$ to produce the free silicon and the generated free silicon dissolves into copper, resulting in a significant increase of resistivity. Furthermore, increasing oxidation temperature rapidly decreases the resistivity at the initial stage of oxidation and then continues to increase the resistivity to the saturation value with increasing oxidation time. The saturation value depends on the residual Mg content and the thickness of the alloy. TEM and AES analyses reveal that dense, uniform MgO grows to the limiting thickness of about $150\AA$. However, interfacial MgO does not show the limiting thickness, instead continues to grow until Mg is completely exhausted. From these facts, we proposed the maximum available Mg content needed to from the dense MgO on the surface and suppress the excessive interfacial reaction.

  • PDF

슬롯 다이 코팅과 Thermal Reflow방법을 이용한 Cylindrical 마이크로렌즈 제조 (Fabrication of Cylindrical Microlens Using Slot-die Coating and Thermal Reflow Method)

  • 이진영;박종운
    • 반도체디스플레이기술학회지
    • /
    • 제19권3호
    • /
    • pp.30-35
    • /
    • 2020
  • A microlens has been fabricated by various methods such as a thermal reflow, hot embossing, diamond milling, etc. However, these methods require a relatively complex process to control the microlens shape. In this work, we report on a simple and cost-effective method to fabricate a cylindrical microlens (CML), which can diffuse light widely. We have employed a slot-die head with the dual plate (a meniscus guide with a protruded μ-tip and a shim with a slit channel) for coating of a narrow stripe using poly(methyl methacrylate) (PMMA). We have shown that the higher the coating gap, the lower the maximum coating speed, which causes an increase in the stripe width and thickness. The coated PMMA stripe has the concave shape. To make it in the shape of a convex microlens, we have applied the thermal reflow method. When the stripe thickness is small, however, its effect is negligible. To increase the stripe thickness, we have increased the number of repeated coating. With this scheme, we have fabricated the CML with the width of 223 ㎛ and the thickness of 7.3 ㎛. Finally, we have demonstrated experimentally that the CML can diffuse light widely, a feature demanded for light extraction efficiency of organic light-emitting diodes (OLEDs) and suppression of moiré patterns in displays.

스퍼터링에 의한 펄스파워 캐패시터용 TiO2 박막의 제조 및 전기적특성 (Preparation and Electrical Properties of TiO2 Films Prepared by Sputtering for a Pulse Power Capacitor)

  • 박상식
    • 한국세라믹학회지
    • /
    • 제49권6호
    • /
    • pp.642-647
    • /
    • 2012
  • $TiO_2$ thin films for a pulse power capacitor were deposited by RF magnetron sputtering. The effects of the deposition gas ratio and thickness on the crystallization and electrical properties of the $TiO_2$ films were investigated. The crystal structure of $TiO_2$ films deposited on Si substrates at room temperature changed to the anatase from the rutile phase with an increase in the oxygen partial pressure. Also, the crystallinity of the $TiO_2$ films was enhanced with an increase in the thickness of the films. However, $TiO_2$ films deposited on a PET substrate showed an amorphous structure, unlike those deposited on a Si substrate. An X-ray photoelectron spectroscopy(XPS) analysis revealed the formation of chemically stable $TiO_2$ films. The dielectric constant of the $TiO_2$ films as a function of the frequency was significantly changed with the thickness of the films. The films showed a dielectric constant of 100~110 at 1 kHz. However, the dissipation factors of the films were relatively high. Films with a thickness of about 1000nm showed a breakdown strength that exceeded 1000 kV/cm.

경량화용 박육부재의 형상비가 압궤특성에 미치는 영향 (Influence of dimensional ratio on collapse characteristics for the thin-walled structures of light weight)

  • 정종안;김정호;양인영
    • 한국안전학회지
    • /
    • 제13권3호
    • /
    • pp.11-23
    • /
    • 1998
  • In this study, collapse test of thin-walled structure is performed under axially quasi-static and impact load in collapse characteristic to develop the optimum structural member for a light-oriented automobile. Furthermore, the energy-absorbing capacity is observed according to the variety of configuration(circular, square), aspect ratio in aluminum specimen to obtain basic data for the improved member of vehicle. In both quasi-static and impact collapse test, Al circular specimens collapse, in general, with axisymmetric mode in case of thin thickness while collapse with non-axisynmetric mode according to the thickness increase. For Al rectangular specimens, they collapse with axisymmetric mode in case of thin thickness, with mixed collapse mode according to the increase of thickness. In terms of initial max. load, Al square specimen turns out the best member among specimens, and then Al square, circular and circular with large scaling ratio, respectively. In case of quasi-static compression test, the absorbed energy per unit volume and mass shows higher in Al circular specimen, and then Al square, circular with large scaling ratio, respectively, according to shape ratio the absorbed energy per unit volume and mass in case of max. impact compression load is higher than that of static load. But the absorbed energy per unit volume and mass shows that Al circular specimen is the best member. Especially, unlike max. compression loan, the absorbed energy per unit volume and mass in impact test turns out the low value.

  • PDF

Study on transient performance of tilting-pad thrust bearings in nuclear pump considering fluid-structure interaction

  • Qiang Li;Bin Li;Xiuwei Li;Quntao Xie;Qinglei Liu;Weiwei Xu
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2325-2334
    • /
    • 2023
  • To study the lubrication performance of tilting-pad thrust bearing (TPTBs) during start-up in nuclear pump, a hydrodynamic lubrication model of TPTBs was established based on the computational fluid dynamics (CFD) method and the fluid-structure interaction (FSI) technique. Further, a mesh motion algorithm for the transient calculation of thrust bearings was developed based on the user defined function (UDF). The result demonstrated that minimum film thickness increases first and then decreases with the rotational speed under start-up condition. The influence of pad tilt on minimum film thickness is greater than that of collar movement at low speed, and the establishment of dynamic pressure mainly depends on pad tilt and minimum film thickness increases. As the increase of rotational speed, the influence of pad tilt was abated, where the influence of the moving of the collar dominated gradually, and minimum film thickness decreases. For TPTBs, the circumferential angle of the pad is always greater than the radial angle. When the rotational speed is constant, the change rate of radial angle is greater than that of circumferential angle with the increase of loading forces. This study can provide reference for improving bearing wear resistance.

이온질화 에 있어서 첨가탄소량 이 경도 및 마모특성 에 주는 영향 (The Added Carbon Content Effect on the Hardness And Wear Characteristics in Ion-Nitriding)

  • 김희송
    • 대한기계학회논문집
    • /
    • 제7권1호
    • /
    • pp.19-27
    • /
    • 1983
  • This paper deals with hardness and wear characteristics of ion-nitrided metal, and with ion-nitride processing which is concerned with the effects of added carbon content in gas atmosphere. A small optimal amount of carbon content in gas atmosphere increase compound layer thickness, as well as to increase diffusion layer thickness and hardness, and reduces wear rate when the applied wear load is small. It is found in the analysis that under small applied wear load, the critical depth where voids and cracks may be created and propagated is located at the compound layer, so that the abrasive wear where hardness is an important factor, is created and the existence of compound layer reduces the amount of wear. When the load becomes large, the critical depth is located below nucleation and propagation, is created and the existence of compound layer increase wear rate.