• Title/Summary/Keyword: Thickness dependence

Search Result 501, Processing Time 0.029 seconds

Vibration of Contact Lenses (콘택트 렌즈의 진동에 관한 연구)

  • Kim, Dae Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.6 no.1
    • /
    • pp.13-29
    • /
    • 2001
  • A mathematical model was proposed to analyze the vibration of diaphragm, such as the contact lenses fitted on the eyes, being subjected to the external sinusoidal pressure. The model incorporates the differential equations and their numerical solution program, based on the wave equations. Turbo-C and graphic software, formulated to describe the dependence of the various parameters involved in the vibration. The model predicts the radial distribution of amplitude, frequency dependence of both average displacement amplitude and the power of diaphragm whose edge is being either simply supported or rigidly clamped in vibration. The effect of variables such as thickness, radius, damping coefficients on the vibration characteristics was illustrated by the computer simulation of the derived program. As the frequency of driving pressure increases above the certain value determined by the boundary conditions and parameters the wave shape or pattern changes from simple arc to belly or loops having double antinode. It seems that the effect of outer antinode progressively increases as the frequency increases. If this kind of phenomena occurs to the contact lens on the cornea in vivo, it may cause an abnormal correction power in the lenses or pull off the eye due the increased rise of outer part of the lens.

  • PDF

Thin-film optical waveguide $K^{+}$-ion sensor using the evanescent field absorption (소산장 흡수를 이용한 박막 광도파로형 칼륨이온센서)

  • Lee, Su-Mi;Koh, Kwang-Nak;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.214-220
    • /
    • 1997
  • A thin film optical waveguide sensor has been developed to measure and analyze quantitatively some inherent optical properties of biochemical substances. In this paper, two different kinds of thickness of thin film waveguide were prepared by RF sputtering of Corning-7059 glass(n = 1.588 at ${\lambda}=\;514nm$, Ar laser) on Pyrex glass substrates. We made a sensing membrane coated on the thin film waveguide with the poly(vinyl chloride-co-vinyl acetate-co-vinyl alcohol) (91 : 3 : 6) copolymer membrane based on $H^{+}$-selective chromoionophore and $K^{+}$-selective neutral ionophore and then proposed the thin film opptical waveguide ion sensor which can select a potassium ion. This sensor based ell the absorbance change by utilizing chromoionophore and neutral ionophore, which changes their absorption spectrum in the UV-vis region upon complexation of the corresponding ionic species, have been reported. The sensitivity dependence of the proposed sensor on interaction length, waveguide thickness, and content of a chromoionophore was investigated. This sensor has the measurement range of $10^{-6}M{\sim}1M$ for $K^{+}$ concentration and 90% response time of duration within 1 min. Also, our thin film optical waveguide sensor using the evanescent field was investigated as compared with conventional transmission sensor or optode sensor by the optical fiber. The sensitivity of thin-film waveguide $K^{+}$ sensor is higher than that of the conventional transmission sensor. The proposed sensor is expected to be useful to biochemical, medical, environmental inspection and so on.

  • PDF

Dependence of the Diamond Coating Adhesion on the Microstructure of WC-Co Substrates (WC-Co계 미세조직에 따른 CVD 다이아몬드 코팅막의 접착력 변화)

  • Lee, Dong-Beum;Chae, Ki-Woong
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.10 s.269
    • /
    • pp.728-734
    • /
    • 2004
  • The effect of microstructure of WC-Co substrates which have different WC grain sizes from submicron to 5 $\mu$m on the diamond-substrate adhesion strength was investigated. The substrates were pre-treated by two methods : chemical etching with Murakami's solution and subsequently with $H_2SO_4$, and thermal heat-treatment. The adhesion strength was estimated by degree of peeling after Rockwell indentation. Diamond films of 20 $\mu$m thickness deposited on the heat-treated substrates showed an excellent adhesion strength at the load of 100 kg, which ascribed to the large and elongated WC grains. However, the cutting edge of insert was deformed after heat treatment and the surface morphology of heat treated substrate strongly affected on the surface roughness of the deposited diamond films. On the contrary, the diamond film of 10 $\mu$m in thickness on the chemically etched substrates of average WC grain size over 2 $\mu$m showed good adhesion strength enough not to peel-off under a load of 60 kg. Especially, the substrate of average WC grain size over 5 $\mu$m exhibited much improved reliability of adhesion comparing with the substrate of average grain size under 2 $\mu$m. No substrate deformation was observed in this case after the chemical etching, which is more advantageous and more practical in terms of precious machining than the heat treatment case.

Fundamentals of Contact Lens Movement (콘택트렌즈 운동의 기초)

  • Kim, Dae Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.1
    • /
    • pp.5-13
    • /
    • 2008
  • Purpose: This review article was written to investigate what kind of forces are acting on the contact lens fitted on the cornea and its subsequent motion. Methods: A capillary action-induced force develops in the tear layer between the lens and cornea, which leads to the restoring force due to difference in layer thickness according to lens rotation. The characteristics of the lens movement can be determined by the various factors such as friction between eyelid and lens, acceleration force based on blinking and the restoring force incorporated with the viscous damping force. A mathematical model which consists of the differential equations and their numerical solution was proposed to analyze the damped motion of lenses. The model predicts the time dependence of lenses during and after the blink varying the BC, blink period and eyelid pressure. Results: It was found that both the blink period and lid pressure increases the movement increases because of the enhanced lid friction. As the BC increases the viscous damping reduces due to the lacrimal layer's increase which resulted in the enhanced lens motion. After blink the lens illustrates the damped oscillation because of the restoring force by the increased lacrimal layer thickness and reduced viscous resistance. The time for the lens to return to the equilibrium shortens as the BC increase because of the resistance reduction. Conclusions: The movement of the contact lens is governed by the characteristics of the lacrimal layer between the lens and cornea as well as the lid blink.

  • PDF

Dependence of Coercivity and Exchange Bias by Thickness and Materials of Inserted Layer in [Pd/Co]5/X/FeMn Multilayer with Out-of-plane Magnetic Anisotropy (수직자기이방성을 갖는 [Pd/Co]5/X/FeMn 다층박막에서 삽입층 물질과 두께에 따른 교환바이어스와 보자력의 의존성)

  • Heo, Jang;Park, Dong-Hun;Kang, Wang-Son;Ji, Sang-Hun;Lee, Ky-Am
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.5
    • /
    • pp.185-189
    • /
    • 2008
  • We observe the change of coercivity and exchange bias, depending on inserting material and thickness in a [Pd(0.6 nm)/$Co(0.2)]_5$/ FeMn(10) multilayer structure with perpendicular anisotropy. When 0.78 and 1.28 nm thick NiFe substitutes for Co in a $[Pd(0.6 nm)Co(0.2)]_4$/Pd(0.6)/NiFe(t)/FeMn(10) structure, we obtain the exchange bias of 360 Oe. In addition, when $Co_8Fe_2$ and $Co_9Fe_1$ are inserted for Co/FeMn interface, we obtain the exchange bias of 380 nm for a 0.68 nm thick $Co_8Fe_2$ and 580 Oe for a 0.52 nm thick $Co_9Fe_1$.

The effects of growth temperatures and V/III ratios at 1000℃ for a-plane GaN epi-layer on r-plane sapphire grown by HVPE (r면 사파이어 위에 HVPE로 성장된 a면 GaN 에피층의 성장온도 효과 및 1000℃에서의 V/III족 비의 효과)

  • Ha, Ju-Hyung;Park, Mi-Seon;Lee, Won-Jae;Choi, Young-Jun;Lee, Hae-Yong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.2
    • /
    • pp.56-61
    • /
    • 2015
  • The effects of the growth temperature on the properties of a-plane GaN epi-layer on r-plane sapphire by HVPE were studied, when the constant V/III ratio and the flow rate of HCl for the Ga source channel was fixed at 10 and 700 sccm, respectively. Additionally the effects of V/III ratios for source gasses were studied when growth temperature and the flow rate of HCl for the Ga source channel was fixed at $1000^{\circ}C$ and 700 sccm, respectively. As the growth temperature was increased, the values of Full Width Half Maximum (FWHM) for Rocking curve (RC) of a-plane GaN (11-20) epi-layer were decreased and thickness of a-plane GaN epi-layer were increased. As V/III ratios were increased at $1000^{\circ}C$, the values of FWHM for RC of a-plane GaN (11-20) were declined and thickness of a-plane GaN epi-layer were increased. The a-plane GaN (11-20) epi-layer grown at $1000^{\circ}C$ and V/III ratio = 10 showed the lowest value FWHM for RC of a-plane GaN (11-20) for 734 arcsec and the smallest dependence of Azimuth angle for FWHM of (11-20) RCs.

Effect of Cortical Bone on Acoustic Properties of Trabecular Bone in Bovine Femur In Vitro (생체 외 조건의 소 대퇴골에서 해면질골의 음향특성에 대한 피질골의 효과)

  • Hwang, Kyo Seung;Lee, Kang Il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.181-189
    • /
    • 2013
  • The purpose of the present study is to investigate the effect of cortical bone on acoustic properties of trabecular bone, such as speed of sound (SOS) and normalized broadband ultrasound attenuation (nBUA), in bovine femur in vitro. Twelve trabecular bone samples and three cortical bone plates with thicknesses of 1.00, 1.47, and 2.00 mm were extracted from the proximal end of two bovine femurs. The correlations between acoustic properties and trabecular apparent bone density were also examined before and after attaching a cortical bone plate to the trabecular bone samples. SOS increased linearly with increasing thickness of the cortical plate attached to one side of ultrasonic incidence of the trabecular bone samples, whereas nBUA showed a nonlinear dependence on the thickness of the cortical plate. All the SOS (r = 0.95-0.97) and nBUA (r = 0.53-0.73) measurements with and without the cortical bone plate with various thicknesses were found to exhibit high correlations with the trabecular apparent bone density. These results imply that the acoustic properties measured in the femur with lateral cortical layers in vitro can be useful indices for the prediction of trabecular bone mineral density.

Dielectric Properties of Sardine-Starch Paste at Low Moisture Contents 1, Effect of Moisture Content and Frequency (정어리 마쇄육의 저수분에서의 유전특성 1. 수분함량과 주파업에 따른 유전특성)

  • LEE Byeong-Ho;KIM Chang-Yang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.16 no.2
    • /
    • pp.125-132
    • /
    • 1983
  • Dielectric properties of sardine-starch paste with moisture content of 4 to $13\%$ were investigated as functions of moisture and frequency. And the effects of the levels of fat and starch of the mixtures upon dielectric permittivity, critical moisture, were also mentioned. In addition, a theoretical prediction of frequency dependence of dielectric constant which was computed by the lumped circuit of two layer condenser model was evaluated. For the preparation of sardine-starch paste, comminuted sardine meat was washed thoroughly several times in chilled water by soaking and decanting, and finally centrifuged. This procedure was extended longer to provide a low fat sample. The centrifuged meat was mixed with adequate amounts of starch and salt, and ground for 25 minutes in a stone mortar, moulded in the form of disk with 7cm diameter and 1.2cm thickness and then freeze dried. Dried meat disks were cut off for the size of 5.5cm diameter and 1.0cm thickness and their moisture contents were controlled in humidified desiccators with saturated solutions. Dielectric constants of sardine-starch paste tended to decrease frequency was increased showing a critical charge at the moisture called critical moisture content. In case of the sample with $20\%$ starch and $2\%$ salt an average complex permittivity($\epsilon^{\ast}$) at 7 to $8\%$ morsture as the critical moisture content was presented; $\epsilon^{\ast}$=3.37+j 0.39 at 0.1 MHz, $\epsilon^{\ast}$=2.54+j 0.19 at 15 MHz, and $\epsilon^{\ast}$=2.15+j 0.08 at 1.8 GHz, respectively. The theoretically obtained complex permittivity values from the two layer condoner model were in close agreement with these actual measurements under the same conditions, that appeared as $\epsilon^{\ast}$=2.53+i 0.09 at 0.1 MHz and $\epsilon^{\ast}$=2.28+j 0.06 at 15 MHz, respectively. The fast level of the mixture also revealed an influence on dielectric property that defatted neat with $1.0\%$ fat showed a higher hc and $\epsilon^{\ast}$ value than the meat with $4.8\%$ fat. Complex permittivity being related to the moisture level remained nearly unchanged or slightly changed at the moisture range of 4 to $8\%$ but was dispersed widely at higher moisture contents.

  • PDF

Magnetoresistance of $[FeNi/Cu/CoFe(Co)/Cu]_N$ Spin-Valve Multilayers ($[FeNi/Cu/CoFe(Co)/Cu]_N$ Spin-Valve 다층박막의 자기저항 특성)

  • 김미양;이정미;최규리;오미영;이장로
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.1
    • /
    • pp.41-47
    • /
    • 1999
  • $Buffer/[NiFe/Cu/CoFe(Co)/Cu]_N$ spin valve multilayers prepared by dc magnetron sputtering on a corning glass substrate using NiFe and CoFe(Co) posses different coercivities. Dependence of magnetoresistance on the type and thickness of buffer layer, thickness of Cu, NiFe, stacking number of multilayer, substrate temperature and annealing temperature in the form $[NiFe/Cu/CoFe(Co)/Cu]_N$ spin-valve multilayers were investigated. To evaluate effect of magnetoresistance for this samples, X-ray diffraction analysis, vibrating sample magnetometer analysis, and magnetoresistance measurement (4-probe method) were performed the maximum magnetoresistance ratio and coercivity were 7.5 % and 140 Oe, respectively for $Cr-50{\AA}/[NiFe-20{\AA}/Cu-{\AA}/Co-20{\AA}/Cu-50{\AA}]_10$ at substrate temperature of 9$0^{\circ}C$. Magnetoresistance slope maintained 0.25%/Oe until 15$0^{\circ}C$ of annealing temperature, and then decreased to 0.03%/Oe at 20$0^{\circ}C$. It was confirmed that the main factor of thermal stability was deteriorating of soft magnetic properties in the NiFe layer.

  • PDF

A topological metal at the surface of an ultrathin BiSb alloy film

  • Hirahara, T.;Sakamoto, Y.;Saisyu, Y.;Miyazaki, H.;Kimura, S.;Okuda, T.;Matsuda, I.;Murakami, S.;Hasegawa, S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.14-15
    • /
    • 2010
  • Recently there has been growing interest in topological insulators or the quantum spin Hall (QSH) phase, which are insulating materials with bulk band gaps but have metallic edge states that are formed topologically and robust against any non-magnetic impurity [1]. In a three-dimensional material, the two-dimensional surface states correspond to the edge states (topological metal) and their intriguing nature in terms of electronic and spin structures have been experimentally observed in bulk Bi1-xSbx single crystals [2,3,4]. However, if we want to know the transport properties of these topological metals, high purity samples as well as very low temperature will be needed because of the contribution from bulk states or impurity effects. In a recent report, it was also shown that an intriguing coupling between the surface and bulk states will occur [5]. A simple solution to this bothersome problem is to prepare a topological metal on an ultrathin film, in which the surface-to-bulk ratio is drastically increased. Therefore in the present study, we have investigated if there is a method to make an ultrathin Bi1-xSbx film on a semiconductor substrate. From reflection high-energy electron diffraction observation, it was found that single crystal Bi1-xSbx films (0${\sim}30\;{\AA}A$ can be prepared on Si(111)-$7{\times}7$. The transport properties of such films were characterized by in situ monolithic micro four-point probes [6]. The temperature dependence of the resistivity for the x=0.1 samples was insulating when the film thickness was $240\;{\AA}A$. However, it became metallic as the thickness was reduced down to $30\;{\AA}A$, indicating surface-state dominant electrical conduction. Figure 1 shows the Fermi surface of $40\;{\AA}A$ thick Bi0.92Sb0.08 (a) and Bi0.84Sb0.16 (b) films mapped by angle-resolved photoemission spectroscopy. The basic features of the electronic structure of these surface states were shown to be the same as those found on bulk surfaces, meaning that topological metals can be prepared at the surface of an ultrathin film. The details will be given in the presentation.

  • PDF