• Title/Summary/Keyword: Thick film technology

Search Result 415, Processing Time 0.051 seconds

MO-COMPOUNDS AS A DIFFUSION BARRIER BETWEEN Cu AND Si

  • Kim, Ji-Hyung;Lee, Yong-Hyuk;Kwon, Yong-Sung;Yeom, Geun-Young;Song, Jong-Han
    • Journal of Surface Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.683-690
    • /
    • 1996
  • In this study, the diffusion barrier properties of $1000 \AA$ thick molybdenum compounds (Mo, Mo-N, $MoSi_2$, Mo-Si-N) were investigated using sheet resistance measurements, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy (SEM), and Rutherford backscattering spectrometry (RBS). Each barrier material was deposited by the dc magnetron sputtering, and annealed at 300-$800^{\circ}C$ for 30min in vacuum. Mo and $MoSi_2$ barrier were failed at low temperature due to Cu diffusion through grain bound-aries and defects of Mo thin film and the reaction of Cu with Si within $MoSi_2$ respectively. A failure temperature could be raised to $650^{\circ}C$-30min in the Mo barrier system and to $700^{\circ}C$-30min in the Mo-silicide system by replacing Mo and $MoSi_2$ with Mo-N and Mo-Si-N, respectively. The crystallization temperature in the Mo-silicide film was raised by the addition of $N_2$. It is considered that not only the N, stuffing effect but also the variation of crystallization temperature affects the reaction of Cu with Si within Mo-silicide. It was found that Mo-Si-N is more effective barrier than Mo, $MoSi_2$, or Mo-N to copper penetration preventing Cu reaction with the substrate for 30min at a temperature higher than $650^{\circ}C$.

  • PDF

Study on Influence of Carbon Nanotubes and Alumina Additives to Lubrication and Wear Characteristics (카본 나노튜브 및 알루미나 첨가제가 윤활 및 마모특성에 미치는 영향에 대한 연구)

  • Yun, Chang-Seok;Oh, Dae-San;Kim, Hyun-Joon
    • Tribology and Lubricants
    • /
    • v.33 no.5
    • /
    • pp.220-227
    • /
    • 2017
  • In this work, carbon nanotube and nano-size alumina particle are exploited as additive for lubrication experiment. We used pin-on-disk type tribometer to investigate the tribological characteristics of lubricants with respect to additives and rotational speed. We conducted more than 15 trials of tribotests for two hours for each specimen to obtain stable and accurate frictional force and to create measurable wear track on the substrate. We conducted tests at the boundary/mixed lubrication regime to evaluate the influence of additives on the tribological characteristics. We found that the friction coefficient decreased as the rotational speed increased and as additives were added. In particular, the reduction of friction by adding additives was more significant at low rotational speed than at high rotational speed. We speculate that the additives helped to separate and protect the two contacting surfaces at low speed, while the influence of additives was not significant at high speed since sufficiently thick lubricant film was formed. The wear of the substrate was also reduced by adding additives to the lubricant. However, in contrast to friction, the amount of wear at high rotational speed was less when alumina particles were added to the lubricant than the amount of wear at low speed. We speculate that the increased wear at low rotational speed is as a result of the intermittent abrasive wear caused by alumina particles with uneven shape, while the reduced wear at high speed is as a result of sufficient film thickness which prevented the abrasive wear.

A Study on the Development of ac Powder Electroluminescent Lamp (AC 구동 분산형 전장발광램프 개발에 관한 연구)

  • Kim, H.S.;Kim, E.D.;Kang, D.P.;Park, J.M.;Moon, S.I.;Kang, U.;Chun, B.D.
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.306-309
    • /
    • 1989
  • This paper describes the Manufacturing process and electrical properties of ac thick film electroluminescent lamps which made of the mixture of ZnS:Cu,Cl phosphor powder and polymer binding materials. The phosphor layer is sandwiched between two electrodes, one of which is transparent, and is supported by a substrate. The substrate may be glass or flexible plastic or it may be metallic. In this study we manufactured suspend layer which consists of ZnS:Cu,Cl powder suspended in a NBR. As yet our results are behind other commercial product in electrical properties and brightness. However they can be improved by selection of appropriate polymer binding materials, development of blending technology.

  • PDF

A Study on the Copper Metallizing Method of $Al_2$O$_3$ Ceramic Surface (알루미나(Al$_2$O$_3$) 세라믹 표면의 강메탈라이징법에 관한 연구)

  • ;;Choi, Y. G.;Kim, Y. S.
    • Journal of Welding and Joining
    • /
    • v.13 no.3
    • /
    • pp.55-64
    • /
    • 1995
  • Metallizing method on ceramic surface is one of the compositing technology of ceramics and metal. The purpose of this study is to make HIC (Hybrid Intergrated Circuit) with copper metallizing method of which copper layer is formed on ceramic substrate by firing in atmosphere in lieu of conventional hybrid microcircuit systems based on noble metal. Metallizing pastes were made from various copper compounds such as Cu$_{2}$O, CuO, Cu, CuS and kaolin. And the screen printing method was used. The characteristics of metallized copper layers were analyzed through the measurement of sheet resistance, SEM, and EDZX. The results obtainted are summarized as follows; 1. The copper metallizing layers on ceramic surface can be formed by firing in air. 2. The metallized layer using Cu$_{2}$O paste showed the smallest sheet resistance among a group of copper chemical compounds. And optimum metallizing conditions are 15 minutes of firing time, 1000.deg.C of firig temperature, and 3 minutes of deoxidation time. 3. The results of EDAX analysis showed mutual diffusion of Cu and Al. 4. The kaolin plays a important role of deepening the penetration of Cu to $Al_{2}$O$_{3}$ ceramics. But if the kaolin content is too much, sheet resistance increases and copper metallizing layer becomes brittle.

  • PDF

Packaging MEMS, The Great Challenge of the $21^{st}$ Century

  • Bauer, Charles-E.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.04a
    • /
    • pp.29-33
    • /
    • 2000
  • MEMS, Micro Electro-Mechanical Systems, present one of the greatest advanced packaging challenges of the next decade. Historically hybrid technology, generally thick film, provided sensors and actuators while integrated circuit technologies provided the microelectronics for interpretation and control of the sensor input and actuator output. Brought together in MEMS these technical fields create new opportunities for miniaturization and performance. Integrated circuit processing technologies combined with hybrid design systems yield innovative sensors and actuators for a variety of applications from single crystal silicon wafers. MEMS packages, far more simple in principle than today's electronic packages, provide only physical protection to the devices they house. However, they cannot interfere with the function of the devices and often must actually facilitate the performance of the device. For example, a pressure transducer may need to be open to atmospheric pressure on one side of the detector yet protected from contamination and blockage. Similarly, an optical device requires protection from contamination without optical attenuation or distortion being introduced. Despite impediments such as package standardization and complexity, MEMS markets expect to double by 2003 to more than $9 billion, largely driven by micro-fluidic applications in the medical arena. Like the semiconductor industry before it. MEMS present many diverse demands on the advanced packaging engineering community. With focused effort, particularly on standards and packaging process efficiency. MEMS may offer the greatest opportunity for technical advancement as well as profitability in advanced packaging in the first decade of the 21st century! This paper explores MEMS packaging opportunities and reviews specific technical challenges to be met.

  • PDF

A study on the development of thin-walled metal bearing for the large-sized slow speed diesel engines. (대형저속 디젤엔진용 박판형 메탈 베어링의 국산화 개발에 관한 연구)

  • 김영주;조문제
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.4
    • /
    • pp.61-71
    • /
    • 1995
  • Nowadays the thin-walled metal bearing, which is made seperately from the bearing housing and has the ratio of wall thickness/bearing diameter being less than 1/30, are used in many newly developed large-sized slow speed diesel engines for the purpose of upgarding lubication performance and easy maintenance according to the trends of increasing output per cylinder and lowering engine speed. The type of this bearing has been used generally in many small-sized high speed engines applied for automobile, high speed craft and industrial power generation systems since 1950s. But the tranditional thick-walled bearings, whice are linned white metal on the bearing housing directly, have been installed on the large and slow speed engines until 1990s due to the easy manufacturing procedures. In this study we have calculated optimum dimensions of the metal bearing, fabricated special zigs for crush measurement, model test machine, 2 sets of specimens.(crosshead pin bearing, $\phi$818*552*20mm) for B & W 6S70MC(20, 940*88rpm), and evaluated metal constact phenomena of white metal, its friction coefficient, temparature rise through the model test and field performance test.

  • PDF

Characterization of Seawater Electrolysis of Insoluble Catalytic Electrodes Fabricated by RF Magnetron Sputtering (RF Magnetron Sputtering을 이용하여 제작한 불용성 촉매전극의 해수전기분해 특성)

  • Lee, Hyun-Seok;Kim, Sei-Ki;Seok, Hye-Won;Kim, Jin-Ho;Choi, Hun-Jin;Jung, Ha-Ik
    • Korean Journal of Materials Research
    • /
    • v.22 no.2
    • /
    • pp.86-90
    • /
    • 2012
  • Insoluble catalytic electrodes were fabricated by RF magnetron sputtering of Pt on Ti substrates and the performance of seawater electrolysis was compared in these electrodes to that is DSA electrodes. The Pt-sputtered insoluble catalytic electrodes were nearly 150 nm-thick with a roughness of $0.18{\mu}m$, which is 1/660 and 1/12 of these values for the DSA (dimensionally stable anodes) electrodes. The seawater electrolysis performance levels were determined through measurements of the NaOCl concentration, which was the main reaction product after electrolysis using artificial seawater. The NaOCl concentration after 2 h of electrolysis with artificial seawater, which has 3.5% NaCl normally, at current densities of 50, 80 and 140 mA/$cm^2$ were 0.76%, 1.06%, and 2.03%, respectively. A higher current density applied through the electrodes led to higher electrolysis efficiency. The efficiency reached nearly 58% in the Pt-sputtered samples after 2 h of electrolysis. The reaction efficiency of DSA showed higher values than that of the Pt-sputtered insoluble catalytic electrodes. One plausible reason for this is the higher specific surface area of the DSA electrodes; the surface cracks of the DSAs resulted in a higher specific surface area and higher reaction sites. Upon the electrolysis process, some Mg- and Ca-hydroxides, which were minor components in the artificial seawater, were deposited onto the surface of the electrodes, resulting in an increase in the electrical resistances of the electrodes. However, the extent of the increase ranged from 4% to 7% within an electrolysis time of 720 h.

Fabrication of PZT Film by a Single-Step Spin Coating Process

  • Oh, Seung-Min;Kang, Min-Gyu;Do, Young-Ho;Kang, Chong-Yun;Nahm, Sahn;Yoon, Seok-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.193-193
    • /
    • 2011
  • To obtain ceramic films, the sol-gel coating technique has been broadly used with heat treatment, but crack formation tend to occur during heat treatment in thick sol-gel films. We prepared PZT thin films by sol-gel method with single-step spin coating process. The PZT solution have been synthesized using lead acetate ($Pb(CH_3COO)_2$), zirconium acetylacetonate ($Zr(OC_3H_7^n)_4$), and titanium diisopropoxide bis(acetylacetonate) 75wt% in isopropanol ($Ti(OC_3H_7^i)_2(OC_3H_7^n)_2$) as starting materials and n-propanol was selected as a solvent. The poly(vynilpyrrolidone) (PVP) was added with 0, 0.25, 0.5, 0.75, and 1 molar ratios to control viscosity of solution. We investigated influence of the viscosity on thickness, microstructure, and electrical properties of final PZT films. Thermo-gravimetric analysis and differential scanning calorimeter (TGA/DSC) was carried out from room temperature to $800^{\circ}C$ in order to measure pyrolysis temperature. Structural characteristics were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Ferroelectric and dielectric properties were measured by RT66A (Radiant) and impedance analyzer (Agilent), respectively. The thicknesses of PZT films depended on incorporation of an excess amount of PVP. Finally, we obtained PZT films of good quality without crack formation via single-step spin coating.

  • PDF

Fabrication of Artificial Sea Urchin Structure for Light Harvesting Device Applications

  • Yeo, Chan-Il;Kwon, Ji-Hye;Kim, Joon-Beom;Lee, Yong-Tak
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.380-381
    • /
    • 2012
  • Bioinspired sea urchin-like structures were fabricated on silicon by inductively coupled plasma (ICP) etching using lens-like shape hexagonally patterned photoresist (PR) patterns and subsequent metal-assisted chemical etching (MaCE) [1]. The lens-like shape PR patterns with a diameter of 2 ${\mu}m$ were formed by conventional lithography method followed by thermal reflow process of PR patterns on a hotplate at $170^{\circ}C$ for 40 s. ICP etching process was carried out in an SF6 plasma ambient using an optimum etching conditions such as radio-frequency power of 50 W, ICP power of 25 W, SF6 flow rate of 30 sccm, process pressure of 10 mTorr, and etching time of 150 s in order to produce micron structure with tapered etch profile. 15 nm thick Ag film was evaporated on the samples using e-beam evaporator with a deposition rate of 0.05 nm/s. To form Ag nanoparticles (NPs), the samples were thermally treated (thermally dewetted) in a rapid thermal annealing system at $500^{\circ}C$ for 1 min in a nitrogen environment. The Ag thickness and thermal dewetting conditions were carefully chosen to obtain isolated Ag NPs. To fabricate needle-like nanostructures on both the micron structure (i.e., sea urchin-like structures) and flat surface of silicon, MaCE process, which is based on the strong catalytic activity of metal, was performed in a chemical etchant (HNO3: HF: H2O = 4: 1: 20) using Ag NPs at room temperature for 1 min. Finally, the residual Ag NPs were removed by immersion in a HNO3 solution. The fabricated structures after each process steps are shown in figure 1. It is well-known that the hierarchical micro- and nanostructures have efficient light harvesting properties [2-3]. Therefore, this fabrication technique for production of sea urchin-like structures is applicable to improve the performance of light harvesting devices.

  • PDF

Postharvest Changes in Quality and Biochemical Components of Leaf Lettuce (상치의 수확후(收穫後) 품질(品質) 및 성분변화(成分變化))

  • Kim, Seong Yeol;Hong, Young Pyo;Choi, Woo Young
    • Korean Journal of Agricultural Science
    • /
    • v.12 no.1
    • /
    • pp.128-138
    • /
    • 1985
  • This study was conducted to elucidate the shelf-life and quality changes in relation to biochemical components in leaf lettuce (Lactuca sativa L.). The shelf-life of leaf lettuce at room temperature was 2 to 3 days. But it was extended to 3 weeks by packaging in a 0.01 mm thick polyethylene film sack when stored at $3^{\circ}C$. The ascorbic acid contents of fresh leaf lettuce was 25 mg per 100 gram fresh weight. The acid at room temperature was almost destroyed after 4 days storage. But the contents of ascorbic acid at $3^{\circ}C$ maintained about 50 to 60% of the initial level in packaging of polyethylene film sack after 8 days storage. The content of chlorophyll was greatly decreased at room temperature but no significant changes were found at $3^{\circ}C$. The changes of total sugar and reducing sugar contents during storage were not very different between treatments. The contents of alkali soluble protein and free amino acid gradually increased in the treatments of polyethylene film sack packaging during storage in general, but the contents decreased after the increase in control treatment. Nucleic acid content, peroxidase and polyphenoloxidase activities were measured and discussed in relation to the leaf senescence.

  • PDF