• Title/Summary/Keyword: Thermostat

Search Result 80, Processing Time 0.026 seconds

A Comparison of Heating Control Characteristics by Temperature Sensing Methods for Thermostatic Valves with the Proportional Control Mode (비례제어식 자동온도조절기의 온도감지방식별 난방제어 특성 비교)

  • Kim, Yong-Ki;Lee, Tae-Won;Kang, Sung-Ju
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.161-166
    • /
    • 2007
  • Various thermostatic valves have been used widely in Korea for conservation of heating energy and enhancement of thermal comfort in residential buildings. But heating control performances of thermostatic valves extensively vary with the design and operational conditions of the heating system, climate condition and others. An experimental method was carried out in this study to analyze heating control characteristics by temperature sensing methods of thermostatic valves for various parameters, such as supply temperatures and flow rate of hot water, the position of room thermostats and outdoor air temperatures. As a result, the heat flow rate per day of S-Valve($34^{\circ}C$-Type) of water temperature sensing method was liked that of C-Valve of indoor air temperature sensing method with stage 3.3 of room thermostat in case supply temperature of hot water was $45^{\circ}C$, flow rate was 1.3 L/min and outdoor air temperature was $7.8^{\circ}C$.

  • PDF

Computer Simulation of an Automotive Engine Cooling System (자동차 엔진 냉각시스템의 컴퓨터 시뮬레이션)

  • 원성필;윤종갑
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.58-67
    • /
    • 2003
  • An automotive engine cooling system is closely related with overall engine performances, such as reduction of fuel consumption, decrease of air pollution, and increase of engine life. Because of complex reaction between each component, the direct experiment, using a vehicle, takes high cost, long time, and slow response to the system change. Therefore, a computer simulation would provide the designer with an inexpensive and effective tool for design, development, and optimization of the engine cooling system over a wide range of operating conditions. In this work, it has been predicted the thermal performance of the engine cooling system in cases of stationary mode, constant speed mode, and city-drive mode by mathematical modelling of each component and numerical analysis. The components are engine, radiator, heater, thermostat, water pump, and cooling fans. Since the engine model is the most important, that is divided into eight sub-sections. The volume mean temperature of eight sub-sections are simultaneously calculated at a time. For detail calculation, the radiator and heater are also divided into many sub-sections like control volumes in finite difference method. Each sub-section is assumed to consist of three parts, coolant, tube with fin, and air. Hence it has been developed the simulation program that can be used in case of design and system configuration changes. The overall performance results obtained by the program were desirable and the time-traced tendencies of the results agreed fairly well with those of actual situations.

Implementation of Logistics Warehouses Management System Using Zigbee Technology (Zigbee를 이용한 물류창고관리 시스템 구축)

  • Park, doo-jin;Park, sung-won;Kim, min-jung;Cho, joon-hwan;kang, min-ho;Choi, young-bok
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.539-542
    • /
    • 2008
  • Wireless sensor network devotes to improving energy efficient and reducing energy costs.We have to monitor in building for 24hours not to incur expansive energy costs in case of problem about a thermostat of buildings or logistics warehouse. It is to incur serious problems of safety of keeping products and a waste of energy. In this paper, establishes a logistics warehouses system based by Zigbee technology to solve that problem.

  • PDF

A Study on the Actual Condition and Effect of Dust Scattering in Construction Field (건설현장에서 발생하는 비산먼지의 실태 및 영향에 관한 연구)

  • Yu, Hee-Jong;Han, Kyeong-Yeon;Kwak, Kwang-Soo;Kim, Jae-Soo;Yang, Keek-Yeong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.4
    • /
    • pp.109-115
    • /
    • 2004
  • Dust scattering is one of the major problem for the residents living nearby construction field with construction noise and vibration. The dust scattering may inflict a considerable damage to psychological, spiritual discomfort to neighboring peoples. Therefore, the trouble of residents living nearby construction field have been increasing. Nevertheless, in our country, adequate guidelines for the dust scattering are not yet established because of the lack of basic data and insufficient research works. In this point, this study has researched its level of damage by conducting of the interview-survey which utilizing of questionnaire-paper asking for those staffs and workers to answer in the construction field, in order to grasp the damage extent of the actual condition effect and response against scattering dust in construction field. As the result, the occurring rate of dust scattering was appeared high compare with other constructing processes, due to utilization of construction equipment that operating at the fundamental basic construction stage, and it was turned out that presently the proper countermeasure and training against scattering dust in the construction site is insufficient. As for the solution mean against that, it is considered that with the better operation of construction site such as the installation of facilities for occurrence-restraint of dust scattering, frequent sprinkling of water, use of thermostat-covers, as well as those methods to be minimized of the occurrence of dust scattering must be contrived through the education for an attention how to use of construction equipment and training at the site.

Load Modeling based on System Identification with Kalman Filtering of Electrical Energy Consumption of Residential Air-Conditioning

  • Patcharaprakiti, Nopporn;Tripak, Kasem;Saelao, Jeerawan
    • International journal of advanced smart convergence
    • /
    • v.4 no.1
    • /
    • pp.45-53
    • /
    • 2015
  • This paper is proposed mathematical load modelling based on system identification approach of energy consumption of residential air conditioning. Due to air conditioning is one of the significant equipment which consumes high energy and cause the peak load of power system especially in the summer time. The demand response is one of the solutions to decrease the load consumption and cutting peak load to avoid the reservation of power supply from power plant. In order to operate this solution, mathematical modelling of air conditioning which explains the behaviour is essential tool. The four type of linear model is selected for explanation the behaviour of this system. In order to obtain model, the experimental setup are performed by collecting input and output data every minute of 9,385 BTU/h air-conditioning split type with $25^{\circ}C$ thermostat setting of one sample house. The input data are composed of solar radiation ($W/m^2$) and ambient temperature ($^{\circ}C$). The output data are power and energy consumption of air conditioning. Both data are divided into two groups follow as training data and validation data for getting the exact model. The model is also verified with the other similar type of air condition by feed solar radiation and ambient temperature input data and compare the output energy consumption data. The best model in term of accuracy and model order is output error model with 70.78% accuracy and $17^{th}$ order. The model order reduction technique is used to reduce order of model to seven order for less complexity, then Kalman filtering technique is applied for remove white Gaussian noise for improve accuracy of model to be 72.66%. The obtained model can be also used for electrical load forecasting and designs the optimal size of renewable energy such photovoltaic system for supply the air conditioning.

A Study of the analysis on the risk of ignition and low-temperature burns caused by the use of electrically heated clothes (발열의류로 인한 화재위험성 및 저온화상에 대한 분석 연구)

  • Lee, Jeong-Il
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.2
    • /
    • pp.122-129
    • /
    • 2018
  • Purpose : This study aims to seek out the risk of low-temperature burns and fire. Method : Hot vests are connected by higher voltage than walking voltage. Results : Accordingly, the possibility of low-temperature burns and fire was proved high. It was also shown that hot vests with relatively lower resistance on heat rays reached a higher temperature as the same voltage was applied. Conclusion : There are some problems with hot vests because they do not have any safety devices like a thermostat or a timer to prevent temperature increasing rapidly. For the purpose of reducing the risk of low-temperature burns and fire, setting the standard of the minimum resistance temperature and regulating the use of heat rays with lower resistance are necessary.

Effects on the Esophageal Rewarmer for Repairing in Rabbits with Profound Hypothermia (토끼의 초저체온증 회복을 위한 식도가온법에 관한 연구)

  • 정병현;이병한
    • Journal of Veterinary Clinics
    • /
    • v.17 no.1
    • /
    • pp.138-144
    • /
    • 2000
  • The studies were carried out to investigate the effects of esophageal thermal tube for rewarming in the hypothermia in rabbits. Thiry-one rabbits were continuously cooled with femoral arterio-venous bypass circulation to 25.0${\pm}$0.3$^{\circ}C$(profound hypothermia) of rectal temperature. The experiment was consisted with 3 esophageal thermal tube groups perfused with circulation water at 38${\pm}$1$^{\circ}C$(low, n=12), 42${\pm}$1$^{\circ}C$(medium, n=12), and 45${\pm}$1$^{\circ}C$(high, n=7). Esophageal thermla tube specially constructed double-lumen esophageal tube with circulating warm water at respective htermal grade. With this device, rewarming of the rabbits as follows; High-esophageal thermal tube group(45${\pm}$1$^{\circ}C$)had a more effect on mean arterial pressure(MAP), heart rate(HR), esophageal temperature, and rectal temperature than others groups, but the circulation water at 45$\pm$1$^{\circ}C$ may cause thermal injuries in the esophagus because esophageal temperature increased to 41.1$^{\circ}C$. Medium-esophageal thermal tube group(42${\pm}$1$^{\circ}C$) had a more effect on RR than others groups, but the circulation water at 42${\pm}$1$^{\circ}C$ may also cause thermal injuries in the esophagus if the temperature exceeds 42$^{\circ}C$ for an extended period of time because its esophageal temperature increased to 39.4$^{\circ}C$. Low-esophageal thermal tube group(38${\pm}$1$^{\circ}C$) had a more effect on MAP, RR, and esophageal temperature than others groups. In conclusion, rewarming of the central core in the treatment of profound hypothermia using the esophageal thermal tube perfused with circulation water at 38${\pm}$1$^{\circ}C$ appears to be a ideal alternative safety zone of the temperature of circulation water avoiding thermal injury in esophagus causing by out of order or lower precise thermostat of water bath to that of others groups.

  • PDF

Prediction of Cooling Performance for Indirect Evaporative Cooling System Using Danpla Sheet (단프라시트를 적용한 간접식 증발냉각 장치의 냉각 성능 예측)

  • Kim, Myung-Ho;Kim, Byoung Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.892-897
    • /
    • 2020
  • Previous plastic heat exchangers are expensive because the mold must be newly manufactured depending on the air conditioning space. On the other hand, danpla is so thin that the heat exchange performance is excellent. Moreover, danpla can be used easily in ventilation systems in view of fabrication. This study proposes correlations for the cooling performance of an indirect evaporative cooling system. The experimental apparatus consisted of a heat exchanger, spray nozzle, fan, thermostat, pump, and measuring sensors for temperature, humidity, and airflow rate. The results showed that the effectiveness decreased gradually as the airflow rate increased. In addition, there was an optimal condition in terms of effectiveness. The performance prediction correlations were determined using the experimental data from various conditions. The proposed correlations showed performance accuracies within 4 % error.

A Study on Optimum Takeoff Time of the Hybrid Electric Powered Systems for a Middle Size UAV (중형무인기용 하이브리드 전기동력시스템의 최적 이륙시간에 관한 연구)

  • Lee, Bohwa;Park, Poomin;Kim, Keunbae;Cha, Bongjun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.11
    • /
    • pp.940-947
    • /
    • 2012
  • The target system is a middle size UAV, which is a low-speed long-endurance UAV with a weight of 18 kg and wingspan of 6.4 m. Three electric power sources, i.e. solar cells, a fuel cell, and a battery, are considered. The optimal takeoff time is determined to maximize the endurance because the generated solar cell's energy is heavily dependent on it. Each power source is modeled in Matlab/Simulink, and the component models are verified with the component test data. The component models are integrated into a power system which is used for power simulations. When takeoff time is at 6 pm and 2 am, it can supply the power during 37.5 hrs and 27.6 hrs, respectively. In addition, the thermostat control simulation for fuel cell demonstrates that it yields more power supply and efficient power distribution.

Study on Dangerous Factors and Damage Pattern Analysis of Leaking Water from Water Purifiers (누수가 발생한 정수기의 위험요소 발굴 및 소손패턴 해석에 관한 연구)

  • Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.57-62
    • /
    • 2012
  • The purpose of this paper is to find dangerous factors of a water purifier when water leaks due to inappropriate use and analyze the patterns of damaged parts in order to provide data for the examination of the cause of the problem. If the water purifier is inspected and managed by a non-specialist, when the FLC(Float Level Controller) at the top is inclined, water leakage may occur to the water purifier. The leaked water flows onto the cables and hoses and enters the thermostat terminal, heater, PCB, power supply connection connector, etc., becoming a dangerous factor that may cause a system failure, fire, etc. Due to the water that entered the input terminal, low noise and white smoke were generated at first. However, the flame gradually propagated due to the continuous inflow of moisture. It was found that when moisture reached the PCB, a carbonized conductive path was formed at the varistor terminal, input terminal, semiconductor device terminal, etc., and the flame became larger, which might result in a fire. From the metal microscope analysis of a damaged condenser terminal, it was found that the amorphous structure unique to copper cable disappeared, and voids, boundary surface and disorderly fine particles occurred. Also, in the case of the connector into which moisture penetrated, fusion and deformation occurred at the cable connection clips. The result of analysis of the power supply cable connector using a thermal image camera showed that most of the heat was generated from the cable connection clips and the temperature at the connection center was normal.