• Title/Summary/Keyword: Thermoplastic films

Search Result 28, Processing Time 0.026 seconds

Optimal Process Condition and Blowing of Thermoplastic Polyester Film using Thermally Expandable Microcapsule (열팽창 캡슐을 적용한 발포 폴리에스테르 필름의 최적 공정 조건 및 발포 특성)

  • Bak, A Ram;Park, Jung Hyun;Lee, Seung Geol
    • Textile Coloration and Finishing
    • /
    • v.31 no.3
    • /
    • pp.187-194
    • /
    • 2019
  • Blowing film was prepared using polyester elastomer with thermally expandable microcapsule to investigate the optimum blowing properties and the film making process. Physical properties including specific gravity, blowing efficiency, foaming shape, tensile strength and elongation of polyester film were tested by varying the process condition of temperature and revolution per minutes of the extruder. The lowest specific gravity of 0.709 can be achieved with excellent foaming cells at $210^{\circ}C$ and 50 RPM conditions. The highest tensile strength and elongation was shown at $210^{\circ}C$, 100 RPM and $230^{\circ}C$, 25 RPM conditions. However, most of the prepared polyester films showed over $1kg_f/mm^2$ of tensile strength which is reasonable value to use in film applications.

3-D Conformal Radiotherapy for CNS Using CT Simulation (입체조준장치를 이용한 중추신경계의 방사선 입체조형치료 계획)

  • 추성실;조광환;이창걸
    • Progress in Medical Physics
    • /
    • v.14 no.2
    • /
    • pp.90-98
    • /
    • 2003
  • Purpose : A new virtual simulation technique for craniospinal irradiation (CSI) that uses a CT-simulator was developed to improve the accuracy of field and shielding placement as well as patient positioning. Materials and Methods : A CT simulator (CT-SIM) and a 3-D conformal radiation treatment planning system (3D-CRT) were used to develop CSI. The head and neck were immobilized with a thermoplastic mask while the rest of the body was immobilized with a Vac-Loc. A volumetric image was then obtained with the CT simulator. In order to improve the reproducibility of the setup, datum lines and points were marked on the head and body. Virtual fluoroscopy was performed with the removal of visual obstacles, such as the treatment table or immobilization devices. After virtual simulation, the treatment isocenters of each field were marked on the body and on the immobilization devices at the conventional simulation room. Each treatment fields was confirmed by comparing the fluoroscopy images with the digitally reconstructed radiography (DRR) and digitally composited radiography (DCR) images from virtual simulation. Port verification films from the first treatment were also compared with the DRR/DCR images for geometric verification. Results : We successfully performed virtual simulations on 11 CSI patients by CT-SIM. It took less than 20 minutes to affix the immobilization devices and to obtain the volumetric images of the entire body. In the absence of the patient, virtual simulation of all fields took 20 min. The DRRs were in agreement with simulation films to within 5 mm. This not only reducee inconveniences to the patients, but also eliminated position-shift variables attendant during the long conventional simulation process. In addition, by obtaining CT volumetric image, critical organs, such as the eyes and the spinal cord, were better defined, and the accuracy of the port designs and shielding was improved. Differences between the DRRs and the portal films were less than 3 m in the vertebral contour. Conclusion : Our analysis showed that CT simulation of craniospinal fields was accurate. In addition, CT simulation reduced the duration of the patient's immobility. During the planning process. This technique can improve accuracy in field placement and shielding by using three-dimensional CT-aided localization of critical and target structures. Overall, it has improved staff efficiency and resource utilization by standard protocol for craniospinal irradiation.

  • PDF

The Effect of Temperature on the Nano-scale Adhesion and Friction Behaviors of Thermoplastic Polymer Films (열가소성 폴리머 필름의 나노 응착 및 마찰 거동에 대한 온도의 영향)

  • Kim, Kwang-Seop;Ando, Yasuhisa;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.23 no.6
    • /
    • pp.288-297
    • /
    • 2007
  • Adhesion and friction tests were carried out in order to investigate the effect of temperature on the tribological characteristics of poly (methylmethacrylate) (PMMA) film using AFM. The pull-off and friction forces on the PMMA film were measured under a high vacuum condition (below $1{\times}10^{-4}$ Pa) as the temperature of the PMMA film was increased from 300 K to 420 K (heating) and decreased to 300K (cooling). Friction tests were also conducted in both high vacuum and air conditions at room temperature. When the temperature was 420 K, which is 25 K higher than the glass transition temperature $(T_g)$ of PMMA, the PMMA film surface became deformable. Subsequently, the pull-off force was proportional to the maximum applied load during the pull-off force measurement. In contrast, when the temperature was under 395 K, the pull-off force showed no correlation to the maximum applied load. The friction force began to increase when the temperature rose above 370 K, which is 25 K lower than the $T_g$ of PMMA, and rapidly increased at 420 K. Decrease of the PMMA film stiffness and plastic deformation of the PMMA film were observed at 420 K in force-displacement curves. After the heating to 420 K, the fiction coefficient was measured under the air condition at room temperature and was found to be lower than that measured before the heating. Additionally, the RMS roughness increased as a result of the heating.

Compressional Properties of PTT BCF and Nylon BCF Carpets (PTT BCF카펫과 나일론 BCF카펫의 압축특성(壓縮特性)에 관(關)한 연구(硏究))

  • Yun, Myung-Hui;Kim, Jong-Jun;Jeon, Dong-Won
    • Journal of Fashion Business
    • /
    • v.8 no.5
    • /
    • pp.115-124
    • /
    • 2004
  • PTT(polytrimethylene terephthalate) is a thermoplastic that can be melt-spun into fibers and has extensive applications in carpets, textiles and apparel, engineering thermoplastics, nonwovens, and films or sheets. This polymer combines the good properties of nylon and polyester. Compared with other synthetic fibers such as nylon and acrylic, the PTT fibers feel softer, dye easier with vibrant colors, stretch and recover better. Moreover, the PTT fibers for carpets resist most stainings, clean better, and dry faster. The PTT was first patented in 1941, but it was not until the 1990's, when Shell Chemicals developed the practical method of producing PDO, the raw material for PTT. Many studies have been done including the retention of carpet texture using an image analysis technique, or compressional resilience of the carpet for long term use. In this study, PTT and nylon BCF carpets were compared in terms of the compressional properties including the resilience, using one of the KES system for repetitive measurements. The compression resilience(RC) values of the PTT BCF carpets far exceed those of nylon 6 BCF carpets. The RC values of the PTT BCF carpet(cut) specimens are $42{\sim}45%$ for 5 successive compression deformations, while those of the nylon BCF carpet specimens(cut) are $26{\sim}28%$. There is also a similar trend in the RC values for the other type of carpet which is the loop type. This resilience is one of the important factors of carpet usage evaluation.

CT Simulation Technique for Craniospinal Irradiation in Supine Position (전산화단층촬영모의치료장치를 이용한 배와위 두개척수 방사선치료 계획)

  • Lee, Suk;Kim, Yong-Bae;Kwon, Soo-Il;Chu, Sung-Sil;Suh, Chang-Ok
    • Radiation Oncology Journal
    • /
    • v.20 no.2
    • /
    • pp.165-171
    • /
    • 2002
  • Purpose : In order to perform craniospinal irradiation (CSI) in the supine position on patients who are unable to lie in the prone position, a new simulation technique using a CT simulator was developed and its availability was evaluated. Materials and Method : A CT simulator and a 3-D conformal treatment planning system were used to develop CSI in the supine position. The head and neck were immobilized with a thermoplastic mask in the supine position and the entire body was immobilized with a Vac-Loc. A volumetrie image was then obtained using the CT simulator. In order to improve the reproducibility of the patients' setup, datum lines and points were marked on the head and the body. Virtual fluoroscopy was peformed with the removal of visual obstacles such as the treatment table or the immobilization devices. After the virtual simulation, the treatment isocenters of each field were marked on the body and the immobilization devices at the conventional simulation room. Each treatment field was confirmed by comparing the fluoroscopy images with the digitally reconstructed radiography (DRR)/digitally composite radiography (DCR) images from the virtual simulation. The port verification films from the first treatment were also compared with the DRR/DCR images for a geometrical verification. Results : CSI in the supine position was successfully peformed in 9 patients. It required less than 20 minutes to construct the immobilization device and to obtain the whole body volumetric images. This made it possible to not only reduce the patients' inconvenience, but also to eliminate the position change variables during the long conventional simulation process. In addition, by obtaining the CT volumetric image, critical organs, such as the eyeballs and spinal cord, were better defined, and the accuracy of the port designs and shielding was improved. The differences between the DRRs and the portal films were less than 3 mm in the vertebral contour. Conclusion : CSI in the supine position is feasible in patients who cannot lie on prone position, such as pediatric patienta under the age of 4 years, patients with a poor general condition, or patients with a tracheostomy.

Comparison of Mechanical and Interfacial Properties of Carbon Fiber Reinforced Recycled PET Composites with Thermoforming Temperature and Time (열 성형 온도 및 시간에 따른 탄소섬유 강화 재활용 PET 복합재료의 계면 및 기계적 물성 비교)

  • Baek, Yeong-Min;Shin, Pyeong-Su;Kim, Jong-Hyun;Park, Ha-Seung;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.30 no.3
    • /
    • pp.175-180
    • /
    • 2017
  • Currently, since carbon fiber reinforced plastics (CFRPs) are lightweight and have excellent physical properties, their demand has increased dramatically. Many works have studied the CFRPs based on recycled thermoplastics. In this study, the applicability of recycled composite was evaluated using recycled polyethylene terephthalate (PET). PET was collected from waste materials used in beverage bottles and processed to produce PET films. Optimal thermoforming temperature and time were analyzed by comparing the mechanical properties with forming temperature and time difference for producing PET films. CF mat and PET film were used to determine the suitable parameters for the optimum thermoforming of CF/PET composites. The mechanical properties of each thermoforming condition were verified by bending test. The degree of impregnation of the PET film into the CF mat was evaluated by cross-sectional photographs, whereas the interfacial properties were evaluated by interlaminar shear strength (ILSS). Ultimately, it was confirmed that the thermoforming condition for forming the CF/recycled PET composites yielding the optimal mechanical and interfacial properties was at $270^{\circ}C$ for 5 minutes.

Setup Verification in Stereotactic Radiotherapy Using Digitally Reconstructed Radiograph (DRR) (디지털화재구성사진(Digitally Reconstructed Radiograph)을 이용한 정위방사선수술 및 치료의 치료위치 확인)

  • Cho, Byung-Chul;Oh, Do-Hoon;Bae, Hoon-Sik
    • Radiation Oncology Journal
    • /
    • v.17 no.1
    • /
    • pp.84-88
    • /
    • 1999
  • Purpose :To develop a method for verifying a treatment setup in stereotactic radiotherapy by ma- tching portal images to DRRs. Materials and Methods : Four pairs of orthogonal portal images of one patient immobilized by a thermoplastic mask frame for fractionated stereotactic radiotherapy were compared with DRRs. Portal images are obtained in AP (anteriorfposterior) and lateral directions with a target localizer box containing fiducial markers attached to a stereotactic frame. DRRs superimposed over a planned iso-center and fiducial markers are printed out on transparent films. And then, they were overlaid over onhogonal penal images by matching anatomical structures. From three different kind of objects (isgcenter, fiducial markers, anatomical structure) on DRRs and portal images, the displacement error between anatomical structure and isocenters (overall setup error), the displacement error between anatomical structure and fiducial markers (irnrnobiliBation error), and the displacement error between fiducial markers and isocenters (localization error) were measured. Results : Localization error were 1.5$\pm$0.3 mm (AP), 0.9$\pm$0.3 mm (lateral), and immobilization errors were 1.9$\pm$0.5 mm (AP), 1.9$\pm$0.4 mm (lateral). In addition, overall setup errors were 1.0$\pm$0.9 mm (AP), 1.3$\pm$0.4 mm (lateral). From these orthogonal displacement errors, maximum 3D displacement errors($\sqrt{(\DeltaAP)^{2}+(\DeltaLat)^{2}$)) were found to be 1.7$\pm$0.4 mm for localization, 2.0$\pm$0.6 mm for immobilization, and 2.3$\pm$0.7 mm for overall treatment setup. Conclusion : By comparing orthogonal portal images with DRRs, we find out that it is possible to verify treatment setup directly in stereotactic radiotherapy.

  • PDF

Development of A Fractionated Stereotactic Radiotherapy System (분할 정위방사선 치료 시스템 개발 연구)

  • 이동한;지영훈;이동훈;조철구;김미숙;유형준;류성렬
    • Progress in Medical Physics
    • /
    • v.13 no.1
    • /
    • pp.9-14
    • /
    • 2002
  • We invented the newly developed Fractionated Stereotactic Radiotherapy(F.S.R.T) system using combined techniques of couch mounting and pedestal mounting system. Head fixation frame consists of a milled alluminium alloy(duralumin) and is placed to the couch. This frame immobilized patient head using the dental bite, 3.2 mm frontal and occipital thermoplastic mask. To evaluate the coordinate of target isocenter, Brown-Revert-Walls C.T localizer can be attached to this frame. And also, we developed the frame mounting system by developing the modification of pedestal mounting system. This system is fixed to couch floor and can be used to evaluate the isocenteric accuracy of gantry, couch and collimator in Q.A procedure. In order to measure the relocation accuracy, the acrylic phantom and the accurate pointers have been made. The repositioning of the targets in the phantom were estimated by comparing C.T coordinates and E.C.L portal films taken with anterior-posterior and right-left direction. From the results of experiments, the average distance errors between the target isocenter and its mean position were 0.71$\pm$0.19 for lateral, 0.45$\pm$0.15 for inferior-superior, 0.63$\pm$0.18 for anterior-posterior. And the maximum distance error was less than 1.3 mm. The new head fixation frame and frame mounting system were non-invasive, accurately relocatable, easy to use, very light and well tolerable by the results of phantom tests. The major advantage of using this frame mounting system is complete access to any point in the Patients cranium especially posterior direction

  • PDF