• 제목/요약/키워드: Thermoplasma acidophilum

검색결과 8건 처리시간 0.023초

Identification and Characterization of Thermoplasma acidophilum 2-Keto-3-Deoxy-D-Gluconate Kinase: A New Class of Sugar Kinases

  • Jung, Jin-Hwa;Lee, Sun-Bok
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제10권6호
    • /
    • pp.535-539
    • /
    • 2005
  • The thermoacidophilic archaeon Thermoplasma acidophilum has long been known to utilize D-glucose via the non-phosphorylated Entner-Doudoroff (nED) pathway. We now report the identification of a gene encoding 2-keto-3-deoxy-D-gluconate (KDG) kinase. The discovery of this gene implies the presence of a glycolysis pathway, other than the nED pathway. It was found that Ta0122 in the T. acidophilum genome corresponded to KDG kinase. This enzyme shares no similarity with known KDG kinases, and belongs to a novel class of sugar kinases. Of the five sugars tested only KDG was utilized as a substrate.

Purification and Characterization of Glycerate Kinase From the Thermoacidophilic Archaeon Thermoplasma acidophilum: An Enzyme Belonging to the Second Glycerate Kinase Family

  • Noh, Mi-Young;Jung, Jin-Hwa;Lee, Sun-Bok
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권4호
    • /
    • pp.344-350
    • /
    • 2006
  • Thermoplasma acidophilum is a thermoacidophilic archaeon that grows optimally at $59^{\circ}C$ and pH 2. Along with another thermoacidophilic archaeon, Sulfolobus solfataricus, it is known to metabolize glucose by the non-phosphorylated Entner-Doudoroff (nED) pathway. In the course of these studies, the specific activities of glyceraldehyde dehydrogenase and glycerate kinase, two enzymes that are involved in the downstream part of the nED pathway, were found to be much higher in T. acidophilum than in S. solfataricus. To characterize glycerate kinase, the enzyme was purified to homogeneity from T. acidophilum cell extracts. The N-terminal sequence of the purified enzyme was in exact agreement with that of Ta0453m in the genome database, with the removal of the initiator methionine. Furthermore, the enzyme was a monomer with a molecular weight of 49kDa and followed Michaelis-Menten kinetics with $K_m$ values of 0.56 and 0.32mM for DL-glycerate and ATP, respectively. The enzyme also exhibited excellent thermal stability at $70^{\circ}C$. Of the seven sugars and four phosphate donors tested, only DL-glycerate and ATP were utilized by glycerate kinase as substrates. In addition, a coupled enzyme assay indicated that 2-phosphoglycerate was produced as a product. When divalent metal ions, such as $Mn^{2+},\;CO^{2+},\;Ni^{2+},\;Zn^{2+},\;Ca^{2+},\;and\;Sr^{2+}$, were substituted for $Mg^{2+}$ the enzyme activities were less than 10% of that obtained in the presence of $Mg^{2+}$. The amino acid sequence of T. acidophilum glycerate kinase showed no similarity with E. coli glycerate kinases, which belong to the first glycerate kinase family. This is the first report on the biochemical characterization of an enzyme which belongs to a member of the second glycerate kinase family.

Crystallization and Preliminary X-Ray Diffraction Analysis of 5,10-Methylenetetrahydrofolate Dehydrogenase/Cyclohydrolase from Thermoplasma acidophilum DSM 1728

  • Kim, Jae-Hee;Sung, Min-Woo;Lee, Eun-Hye;Nam, Ki-Hyun;Hwang, Kwang-Yeon
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권2호
    • /
    • pp.283-286
    • /
    • 2008
  • The methylenetetrahydrofolate dehydrogenase/cyclohydrolase (MTHFDC) from the thermoacidophilic archaeon Thermoplasma acidophilum is a 30.6kDa molecular-mass enzyme that sequentially catalyzes the conversion of formyltetrahydrofollate to methylenetetrahydrofolate, with a preference for NADP as a cofactor, rather than NAD. In order to elucidate the functional and structural features of MTHFDC from archaeons at a molecular level, it was overexpressed in Escherichia coli and crystallized in the presence of its cofactor, NADP, at 295K using polyethylene glycol (PEG) 4000 as a precipitant. The crystal is a member of the monoclinic space group $P2_1$, with the following unit cell parameters: $a=66.333{\AA},\;b=52.868{\AA},\;c=86.099{\AA},\;and\;{\beta}=97.570^{\circ}$, and diffracts to a resolution of at least $2.40{\AA}$ at the synchrotron. Assuming a dimer in the crystallographic asymmetric unit, the calculated Matthews parameter $(V_M)\;was\;2.44{\AA}^3/Da$ and the solvent content was 49.7%.

Thermoplasma acidophilum 유래 ${\alpha}$-glucosidase로 부터 생산된 glycosynthase 돌연변이 단백질의 개선된 당전이 효율 (Improvement of Transglycosylation Efficiency using a Glycosynthase Mutant derived from Thermoplasma acidophilum ${\alpha}$-Glucosidase)

  • 황성민;서성화;박인명;최경화;김도만;차재호
    • 한국미생물·생명공학회지
    • /
    • 제40권2호
    • /
    • pp.104-110
    • /
    • 2012
  • Glycosynthase는 친핵성 아미노산을 비친핵성 아미노산으로 치환하여 당전이 산물의 가수분해를 막아서 당전이 효율을 증가시킬 수 있다. 이전 연구에서 본 실험실은 열에 안정하고 산에 강한 Thermoplasma acidophilum 유래의 ${alpha}$-glucosidase (AglA)가 당전이 활성이 있음을 입증하였으나 시간이 지남에 따라 당전이 산물이 가수분해 되었다. 이러한 AglA의 당전이 효율을 개선하기 위하여 친핵성 아미노산인 아스파라긴산을 글리신으로 치환하였다. 이 치환된 glycosynthase는 니켈 친화력 크로마토그래피를 통하여 정제되었으며, 정제된 돌연변이 단백질의 배당체를 합성하는 능력이 말토오스를 공여체로 그리고 p-nitrophenyl-${alpha}$-D-glucopyranoside($pNP{\alpha}G$)를 수용체로, 그리고 $pNP{\alpha}G$가 당공여체 및 수용체로 이용될 수 있는지 검사하였다. Glycosynthase를 이용한 당전이 산물의 수율은 약 42.5%를 보였으며 시간이 지남에 따라서 가수분해되지 않았다. 박막 크로마토그래피법을 이용한 반응산물의 분석은 수용체의 높은 농도에서 기존의 효소보다 많은 양의 배당체를 합성할 수 있음을 보여주었고, 특히 중성보다 낮은 pH 영역에서 가장 높은 활성을 보여줌을 확인하였다. 이러한 결과는 glycosynthase가 산업적으로 배당체를 합성하는데 유용성이 크다는 것을 나타낸다.

Oligomeric Structure of ${\beta}$-Glucosidases

  • Kim, Sang-Yeob;Kimm, In-Soo
    • Journal of Photoscience
    • /
    • 제11권3호
    • /
    • pp.121-127
    • /
    • 2004
  • The${\beta}$-glucosidases occur widely in all living organisms and has in general a tendency to form oligomers of varying numbers of subunits or aggregates, although the functional implications of such diverse oligomerization schemes remain unclear. In particular, the assembly mode of the oat ${\beta}$-glucosidase is very unique in that it multimerizes by linear stacking of a hexameric building block to form long fibrillar multimers. Some structural proteins such as actin and tubulin assemble into long fibrils in a helical fashion and several enzymes such as GroEL and Pyrodictium ATPase functional complexes, 20S proteasome of the archaebacterium Thermoplasma acidophilum, and lutamine synthetase fromblue-green algae, assemble into discrete oligomers upto 4 stacked rings to maintain their enzymatic activities. In particular, oat ${\beta}$-glucosidase exists in vivo as a discrete long fibrillar multimer assembly that is a novel structure for enzyme protein. It is assembled by linear stacking of hollow trimeric units. The fibril has a long central tunnel connecting to the outer medium via regularly distributed side fenestrations. The enzyme active sites are located within the central tunnel and multimerization increases enzyme affinity to the substrates and catalytic efficiency of the enzyme. Although it is suggested that oligomerization may contribute to the enzyme stability and catalytic efficiency of ${\beta}$-glycosidases, the functional implications of such diverse oligomerization schemes remain unclear so far.

  • PDF