• Title/Summary/Keyword: Thermoelectric cooling

Search Result 131, Processing Time 0.16 seconds

Cooling characteristics of a Liquid cooler Using Thermoeletric Module (열전소자를 이용한 액체 냉각기의 냉각열전달 특성)

  • Park, Min-Young;Lee, Geun-Sik
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.197-202
    • /
    • 2007
  • In this study, the cooling characteristics of a liquid cooler using thermoelectric module was experimentally investigated. The experiment was conducted for various inner structures of liquid cooler (4 cases), hot fluid flow rates (0.15-0.25 L/min), number of T.E module (2, 4, 6 set), and the cooling water flow rates (200-600 cc/min) for both parallel and counter flow types. Among the results, better cooling performance geometry was selected. And experiment was also carried out to examine further enhancement of cooling performance by inserting coils (pitches: 0.2, 3, 6 mm) into the hot-fluid channel. Present results showed that the short serpentine type(case2) indicated the best cooling performance. In the case of coil pitch of 3 mm, the best cooling performance was shown, more than 10% increase of the inlet and outlet temperature difference, compared with the case of the cooler without coil. Consequently, the inserted coil pitch should be properly selected to improve cooling performance.

  • PDF

Circuit Modeling and Simulation for Thermoelectric Cooling System using Condensed Water (응축수를 활용한 열전 냉각장치의 회로 모델링 및 시뮬레이션)

  • Lee, Sang-Yun;Jang, Sukyoon;Park, Mignon;Yoon, Changyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.2
    • /
    • pp.161-167
    • /
    • 2015
  • In this paper, a novel thermoelectric cooling system utilizing condensed water is introduced and its electrical equivalent circuit model is proposed. The introduced system can deals with the condensed water and improves efficiency by spraying the condensed water on heat sink. The electrical equivalent circuit model is derived by combining the circuit model of the classical thermoelectric cooling system with equation of heat exchange. Because the parameters of the model can be defined from not other experimental data but just the data sheet of the thermoelement, the model can be useful to design and develop the controller of the proposed system. We verify that the proposed model is valid and the introduced system is more efficient than the previous thermoelectric cooling system through simulations.

Fundamental Study of Energy Harvesting using Thermoelectric Module on Road Facilities (열전소자를 활용한 도로구조물에서의 에너지 하베스팅 기초 연구)

  • Lee, Jae-Jun;Kim, Dae-Hoon;Lee, Kang-Hwi;Lim, Jae-Kyu;Lee, Seung-Tae
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.51-57
    • /
    • 2014
  • PURPOSES : An conventional method for electric power generation is converting thermal energy into mechanical energy then to electrical energy. Due to environmental issues such as global warming related with $CO_2$ emission etc., were the limiting factor for the energy resources which resulting in extensive research and novel technologies are required to generate electric power. Thermal energy harvesting using thermoelectric generator is one of energy harvesting technologies due to diverse advantages for new green technology. This paper presents a possibility of application of the thermoelectric generator's application in the direct exchange of waste solar energy into electrical power in road space. METHODS : To measure generated electric power of the thermoelectric generator, data logger was adopted as function of experimental factors such as using cooling sink, connection methods etc. Also, the thermoelectric generator、s behavior at low ambient temperature was investigated as measurement of output voltage vs. elapsed times. RESULTS : A few temperature difference between top an bottom of the thermoelectric generator is generated electric voltage. Components of an electrical circuit can be connected in various ways. The two simplest of these are called series and parallel and occur so open. Series shows slightly better performance in this study. An installation of cooling sink in the thermoelectric generator system was enhanced the output of power voltage. CONCLUSIONS : In this paper, a basic concepts of thermoelectric power generation is presented and applications of the thermoelectric generator to waste solar energy in road is estimated for green energy harvesting technology. The possibility of usage of thermoelectric technology for road facilities was found under the ambient thermal gradient between two surfaces of the thermoelectric module. An experiment results provide a testimony of the feasibility of the proposed environmental energy harvesting technology on the road facilities.

Experimental Study on the Power Generation of a Thermoelectric Module with Temperature Difference and Load Resistance (온도차 및 부하 저항에 따른 열전모듈의 발전 특성 분석)

  • Lee, Kong-Hoon;Kim, Ook-Joong;Koh, Deuk-Yong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1942-1947
    • /
    • 2007
  • A thermoelectric module can be used for cooling or power generation. The basic requirements to achieve a significant thermoelectric performance are the same for both generators and coolers. Thermoelectric modules with $Bi_2Te_3$ materials are usually employed in the cooling applications below room temperature but it can also be used for the power generation in the similar temperature range. In the present study, the power generation with a $Bi_2Te_3$ thermoelectric module has been investigated. The temperature difference between the hot and cold sides of the module is maintained with electric heater and cold water from the circulating water bath. The result shows that the electric current generated increases with temperature difference and decreases with the load resistance. However, the voltage increases with both the temperature difference and load resistance. The electric power increases with temperature difference and it has the maximum value when the load resistance is about 4 ${\Omega}$ for a given device.

  • PDF

A study on a precision temperature control unit using thermoelectirc module (열전소자를 이용한 정밀 항온 유지 장치에 관한 실험 및 시뮬레이션 연구)

  • Park, Kyung-Seo;Song, Young-Joog;Im, Hong-Jae;Jang, Si-Yeol;Lee, Kee-Sung;Jeong, Jay;Shin, Dong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1937-1941
    • /
    • 2007
  • During a process of a nanoimprint for manufacturing LCD, a small temperature variation on the LCD glass can cause thermal stress and generate unexpected displacement. To avoid this trouble, a precision temperature control unit using thermoelectric modules is appropriate for nanoimprint processes. The unit consists of an air control system, a cooling water control system, and a power control system. The air control system includes a thermoelectric module, thermocouples measuring temperatures of air and a duct-stale fin, and two air fans. The heat generated by the thermoelectric module is absorbed by the cooling water control system. The power control system catches the temperature of the thermoelectric module, and a PID controller with SCR controls the input power of the thermoelectric module. Temperature control performance is evaluated by experiment and simulation. The temperature control unit is able to control the exit temperature about ${\pm}2^{\circ}C$ from the incoming fluid temperature, and the error range is ${\pm}0.1^{\circ}C$. However, the control time is approximately 30minute, which needs further study of active control

  • PDF

Development of a Waterless Container Utilizing Thermoelectric Modules for Live Fish Transportation (열전소자를 이용한 활어 수송용 무수 컨테이너의 개발)

  • 윤태복;김남진;이재용;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.5
    • /
    • pp.519-524
    • /
    • 2000
  • The purpose of this study is to develop a low temperature waterless container for live fish transportation which is economical and efficient The principle of the waterless transportation is that a live fish becomes asphyxial at about $5^{\circ}C$can survive without water for a long time. A low temperature waterless container is developed for this purpose, which utilizes thermoelectric modules for rather smaller and lighter cooling system with precise temperature control devise compared to the existing mechanical system. At first, we succeeded in making flounders alive in the waterless container for 24 hours. Also when flounders were transported in a round trip from Inchon to Pusan in the waterless container, carried in a car, they survived in the waterless container for over 21 hours.

  • PDF

Cooling-Heating System Using Thermoelectric Module and Parallel Flow Type Pulsating Heat Pipe

  • Kim Jeong-Hoon;Im Yong-Bin;Lee Seong-Ho;Lee Euk-Soo;Kim Jong-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.4
    • /
    • pp.217-224
    • /
    • 2005
  • The purpose of this study was to develop a cooler/heater using a thermoelectric module combined with a parallel flow type pulsating heat pipe with R-142b as a working fluid. The experiment was performed for 16 thermoelectric modules (6A/15V, size: $40\times40\times4mm$), varying design parameters of the heat pipe (inclination angle, working fluid charging ratio, etc.). Experimental results indicate that the optimum charging ratio and the inclination angle of the parallel flow type pulsating heat pipe were $30\%$ by volume and $30^{\circ}$, respectively. The maximum cooler/heater capacity were 479 W (COP: 0.47) and 630 W (COP: 0.9), respectively.

Quality characteristics of beef in thermoelectric cooling system combined with plasma during storage (열전소자 장치 및 플라즈마 처리에 의한 소고기 저장 중 품질특성)

  • Kwon, Ki-Hyun;Sung, Jung-Min;Kim, Ji-Young;Kim, Byeong-Sam;Kim, So-Hee
    • Food Science and Preservation
    • /
    • v.24 no.1
    • /
    • pp.52-59
    • /
    • 2017
  • This study was performed in order to examine the effect of a thermoelectric cooling system combined with plasma on beef. Beef was studied in a box with a thermoelectric cooling system and plasma generation apparatus (TCS-1), a box with thermoelectric cooling system (TCS-2) and a polystyrene box (control). A temperature inside the thermoelectric cooling system was kept below $2^{\circ}C$, and volatile basic nitrogen (VBN) values of TCS-1 and TCS-2 were 7.72 mg% and 9.20 mg%, respectively. The thiobarbituric acid (TBA) value (0.52 mgMA/kg) of TCS-1 was significantly lower than that (0.91 mgMA/kg) of TCS-2. For volatile basic nitrogen (VBN) value, TCS-1 maintained freshness compared to TCS-2, since the freshness of TCS-1 value (6.98-9.77 mg%) was less than that of TCS-2 (6.98-11.45 mg%) during storage. The microbial counts of TCS-1 and TCS-2 were 4.62 log CFU/g and 7.09 log CFU/g, respectively, on the $7^{th}$ day, which were lower than that (8.45 log CFU/g) of control on the $3^{rd}$ day. Sensory evaluation of TCS-1 showed the highest scores for appearance, color, juiciness, and overall acceptability than the others. In conclusion, TCS-1 was effective for maintaining freshness of beef during storage.

An Experimental Study on Cooling Characteristic according to Fin Array of Aluminum Heat Sink (히트싱크의 핀 배열에 따른 냉각특성에 관한 실험적 연구)

  • Yoon, Sung-Un;Kim, Jae-Yeol;Gao, Jia-Chen
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.138-143
    • /
    • 2018
  • In general, the operating temperature of electronic equipment is closely related to product life and reliability, and it is recognized that effectively cooling the parts is an important problem. In this paper, an experimental study on the cooling characteristic according to the pin array of the heat sink is conducted. The experiment on the heat sink was based on the natural convection and temperature distribution changes. The experimental results indicate that the pin array of the heat sink has an effect on the thermoelectric module's cooling characteristic.

Characteristic of Electric Generation for the Water Flow Rate in Thermoelctric Generator Using Hot Water (온수를 이용한 열전발전기에서 유량변화에 따른 발전 특성)

  • Woo, Byung-Chul;Lee, Hee-Woong;Suh, Chang-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1333-1340
    • /
    • 2002
  • The objective of this study is to develop a thermoelectric generation system which converts unused energy from close-at-hand sources such as garbage incineration heat and industrial exhaust etc. into electricity. This paper presents applicability of a commercially available thermoelectric generator f3r waster heat recovery. The test facility consists of water heater, pump, thermoelectric module and aluminium tubes and hot and cold water is used as heat source and sink fluids. It is shown that the three components of thermoelectric research exist in manufacturing a thermoelectric generator. The first component is fabrication of thermoelectric materials, the second is manufacturing of thermoelectric generator with 32 thermoelectric modules. The last one is characteristic measuring of thermoelectric generator with 32 thermoelectric modules of two types, cooling and power purpose. It was found that the rate of cold and hot water is 25 and 37 liter per minute and the maximum power of thermoelectric generator is 28Watts and its efficiency is 1.04%.