• Title/Summary/Keyword: Thermoelectric Effect

Search Result 200, Processing Time 0.028 seconds

Current Status of Thermoelectric Power Generation Technology (열전발전 기술의 현황)

  • Lee, Jae Kwang;Kim, Jin Won;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.353-357
    • /
    • 2016
  • Following the population growth and civilization, resulted in energy-mass consumption society, research efforts on enhancing efficiency of traditional energy sources has been investigated. Among many alternatives, thermoelectric power generation technologies are highlighted as one of solutions for high heat energy efficiencies. Currently, the research area of thermoelectric power generation has been achieved over two of ZT value, which seems to have enough competitiveness as following the development of nano-technologies, in particular, for waste heat recovery, and the development of thermoelectric materials is still ongoing to obtain higher energy efficiencies. In this review, the recent development of thermoelectric materials and module technologies categorized by different temperature regions was briefly introduced.

Effect of Pb Doping on the Thermoelectric Properties of Bi0.48Sb1.52Te3 (Bi0.48Sb1.52Te3의 열전특성에 대한 Pb 도핑 영향)

  • Moon, Seung Pil;Kim, Tae Wan;Kim, Sung Wng;Jeon, Woo Min;Kim, Jin Heon;Lee, Kyu Hyoung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.7
    • /
    • pp.454-458
    • /
    • 2017
  • $Bi_2Te_3$-based alloys have been intensively investigated as active materials for thermoelectric power generation devices from low-temperature (< $250^{\circ}C$) waste heat. In the present study, we fabricated Pb-doped, p-type $Bi_{0.48}Sb_{1.52}Te_3$ polycrystalline bulks by using meltsolidification and spark plasma sintering techniques, and evaluated their thermoelectric transport properties in an effort to develop optimized composition for low-temperature power generation applications. The electronic and thermal transport properties of $Bi_{0.48}Sb_{1.52}Te_3$ could be manipulated by Pb doping. As a result, the temperature for a peak thermoelectric performance (zT) gradually shifted toward higher temperatures with Pb content, suggesting that thermoelectric power generation efficiency can be enhanced by controlled Pb doping.

Geometric Thermoelectric Generator Leg Shape Design for Efficient Waste Heat Recovery (효율적인 폐열 회수를 위한 기하학적 열전소자 다리 설계)

  • Hyeon-Woo Kang;Jung-Hoe Kim;Young-Ki Cho;Won-Seok Choi;Hyun-Ji Lee;Hun-Kee Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.3
    • /
    • pp.589-602
    • /
    • 2024
  • Thermoelectric generator (TEG) generally do not have high heat conversion efficiencies. The performance of a thermoelectric generator module depends on the shape of the legs as well as the properties of the material and the number of legs. In this study, the leg shapes of thermoelectric elements are modeled into various geometric structures such as cylinder and cube shaped to efficiently harvest waste heat, and the electrical characteristics are compared numerically. The temperature gradient and power generation according to the bridge shape are found to be highest at the existing Cube shape. As a result of comparing the power generation using the cooling effect, the Cone shape was the highest in natural convection and the Hourglass shape was highest in forced convection. Research results confirm that geometry can affect the efficiency of thermoelectric generators.

Effect of High-Energy Ball Milling on Thermoelectric Transport Properties in CoSb3 Skutterudite (고에너지 볼 밀링이 Skutterudite계 CoSb3의 열전 및 전하 전송 특성에 미치는 영향)

  • Nam, Woo Hyun;Meang, Eun-Ji;Lim, Young Soo;Lee, Soonil;Seo, Won-Seon;Lee, Jeong Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.12
    • /
    • pp.852-856
    • /
    • 2015
  • In this study, we investigate the effect of high-energy ball milling on thermoelectric transport properties in double-filled $CoSb_3$ skutterudite ($In_{0.2}Yb_{0.1}Co_4Sb_{12}$). $In_{0.2}Yb_{0.1}Co_4Sb_{12}$ powders are milled using high-energy ball milling for different periods of time (0, 5, 10, and 20 min), and the milled powders are consolidated into bulk samples by spark plasma sintering. Microstructure analysis shows that the high-energy ball milled bulk samples are composed of nano- and micro-grains. Because the filling fractions are reduced in the bulk samples due to the kinetic energy of the high-energy ball milling, the carrier concentration of the bulk samples decreases with the ball milling time. Furthermore, the mobility of the bulk samples also decreases with the ball milling time due to enhanced grain boundary scattering of electrons. Reduction of electrical conductivity by ball milling has a decisive effect on thermoelectric transport in the bulk samples, power factor decreases with the ball milling time.

Computational Thermal Flow Analysis of a Cabin Cooler for a Commercial Vehicle (상용차용 캐빈냉방기의 전산 열유동 해석)

  • Kim, J.K.;Oh, S.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.2
    • /
    • pp.17-23
    • /
    • 2012
  • The steady three-dimensional computational thermal flow analysis using standard k-${\varepsilon}$ turbulence model was carried out to investigate the heat transfer characteristics of a cabin cooler for a commercial vehicle. The heat exchanging method of this cabin cooler is to use the cooling effect of a thermoelectric module. In view of the results so far achieved, the air system resistance of a cabin cooler is about 12.4 Pa as a static pressure, and then the operating point of a cross-flow fan considering in this study is formed in the comparatively low flowrate region. The air temperature difference obtained from the cold part of an thermoelectric module is about $26^{\circ}C$, and the cooling water temperature difference obtained from the hot part of an thermoelectric module is about $3.5^{\circ}C$.

Experimental Study of Thermo-electric material using Lithium-Ammonia$(Li(NH_3)_n)$ Solution (리튬-암모니아 $(Li(NH_3)_n)$ 용액을 이용한 열전기적 특성 실험)

  • Park, Han-Woo;Kim, Ji-Beom;Jeon, Joon-Hyeon
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.263-270
    • /
    • 2011
  • The aim of this paper is, through the experiment of Lithium-Ammonia solutions $(Li(NH_3)_n)$, to analyze and verify a thermoelectric-conversion property at near Ammonia-boiling point ($-40^{\circ}C$). The experiment results show that the solutions with 0.58 MPM~1.87 MPM generate thermoelectric power at temperature difference $({\Delta}T=0{\sim}15^{\circ}C)$ where Current is constantly proportional to Voltage. This paper provides a new insight into the development of a thermoelectric material.

Effect of Fe Doping on Thermoelectric Properties of Mechanically Alloyed $CoSb_3$

  • Ur, Soon-Chul;Kwon, Joon-Chul;Kim, Il-Ho
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.957-958
    • /
    • 2006
  • Fe doped skutterudite $CoSb_3$ with a nominal composition of $Fe_xCo_{1-x}Sb_{12}(0{\leq}x{\leq}2.5)$ have been synthesized by mechanical alloying (MA) of elemental powders, followed by vacuum hot pressing. Phase transformations during mechanical alloying and vacuum hot pressing were systematically investigated using XRD. Single phase skutterudite was successfully produced by vacuum hot pressing using as-milled powders without subsequent annealing. However, second phase of $FeSb_2$ was found to exist in case of $x\geq2$, suggesting the solubility limit of Fe with Co in this system. Thermoelectric properties as functions of temperature and Fe contents were evaluated for the hot pressed specimens. Fe doping up to x=1.5 with Co in $Fe_xCo_{4-x}Sb_{12}$ appeared to increase thermoelectric figure of merit (ZT) and the maximum ZT was found to be 0.78 at 525K in this study.

  • PDF

Thermolelectric Properties of p-type $Sb_{2-x}Bi_xTe_3$ grown by MOCVD (MOCVD법으로 성장된 p-형 $Sb_{2-x}Bi_xTe_3$ 박막의 열전특성)

  • Kim, Jeong-Hoon;Kwon, Sung-Do;Jung, Yong-Chul;Yoon, Seok-Jin;Ju, Byeong-Kwon;Kim, Jin-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.138-139
    • /
    • 2006
  • Metal organic chemical vapor deposition has been investigated for growth of $Sb_{2-x}Bi_xTe_3$ films on (001) GaAs substrates using diisopropyltelluride, triethylantimony and trimethylbismuth as metal organic sources. The thermoelectric properties were measured at room temperature and include Seebeck coefficient, electrical conductivity and Hall effect. In-plane carrier concentration and electrical Hall mobility were highly dependent on precursor's composition ratio and deposition temperature. The thermoelectric Power factor($={\alpha}^2{\sigma}$) was calculated from theses properties. The best Power factor was $2.6\;{\times}\;10^{-3}W/mK^2$, given by grown $Sb_{1.6}Bi_{0.4}Te_3$ at $450^{\circ}C$. These materials could potentially be incorporated into advanced thermoelectric unicouples for a variety of power generation applications.

  • PDF

Design and Analysis of Universal Power Converter for Hybrid Solar and Thermoelectric Generators

  • Sathiyanathan, M.;Jaganathan, S.;Josephine, R.L.
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.220-233
    • /
    • 2019
  • This work aims to study and analyze the various operating modes of universal power converter which is powered by solar and thermoelectric generators. The proposed converter is operated in a DC-DC (buck or boost mode) and DC-AC (single phase) inverter with high efficiency. DC power sources, such as solar photovoltaic (SPV) panels, thermoelectric generators (TEGs), and Li-ion battery, are selected as input to the proposed converter according to the nominal output voltage available/generated by these sources. The mode of selection and output power regulation are achieved via control of the metal-oxide semiconductor field-effect transistor (MOSFET) switches in the converter through the modified stepped perturb and observe (MSPO) algorithm. The MSPO duty cycle control algorithm effectively converts the unregulated DC power from the SPV/TEG into regulated DC for storing energy in a Li-ion battery or directly driving a DC load. In this work, the proposed power sources and converter are mathematically modelled using the Scilab-Xcos Simulink tool. The hardware prototype is designed for 200 W rating with a dsPIC30F4011 digital controller. The various output parameters, such as voltage ripple, current ripple, switching losses, and converter efficiency, are analyzed, and the proposed converter with a control circuit operates the converter closely at 97% efficiency.

Effect of Pr substitution on the normal-state and superconducting properties of GdBa$_2$(Cu$_{2.9}$Al$_{0.1}$)O$_z$

  • Park, Jung-Rok;Ha, Dong-Han;Lee, Ho-Keum
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.70-75
    • /
    • 2000
  • We report results of a comparative study of the normal-state and superconducting properties in the GdBa$_2$(Cu$_{2.9}$Al$_{0.1}$)O$_z$ system with substitutions by Pr for the Gd and Ba sites. It is observed that, fur both Pr-doped systems, the superconducting transition temperature(T$_c$) decreases almost linearly with the Pr-content, but Pr at Ba sites results in a faster T$_c$ drop than that of Pr at Gd sites. The thermoelectric power measurements indicate that there is a strong correlation between the T$_c$ and the room temperature value of thermoelectric power. The experimental results are discussed in connection with existing models.

  • PDF