• Title/Summary/Keyword: Thermoelectric Conversion

Search Result 56, Processing Time 0.024 seconds

Transparent Amorphous Oxide Semiconductor as Excellent Thermoelectric Materials (비정질 산화물 반도체의 열전특성)

  • Kim, Seo-Han;Park, Cheol-Hong;Song, Pung-Geun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.52-52
    • /
    • 2018
  • Only approximately 30% of fossil fuel energy is used; therefore, it is desirable to utilize the huge amounts of waste energy. Thermoelectric (TE) materials that convert heat into electrical power are a promising energy technology. The TE materials can be formed either as thin films or as bulk semiconductors. Generally, thin-film TE materials have low energy conversion rates due to their thinness compared to that in bulk. However, an advantage of a thin-film TE material is that the efficiency can be smartly engineered by controlling the nanostructure and composition. Especially nanostructured TE thin films are useful for mitigating heating problems in highly integrated microelectronic devices by accurately controlling the temperature. Hence, there is a rising interest in thin-film TE devices. These devices have been extensively investigated. It is demonstrated that transparent amorphous oxide semiconductors (TAOS) can be excellent thermoelectric (TE) materials, since their thermal conductivity (${\kappa}$) through a randomly disordered structure is quite low, while their electrical conductivity and carrier mobility (${\mu}$) are high, compared to crystalline semiconductors through the first-principles calculations and the various measurements for the amorphous In-Zn-O (a-IZO) thin film. The calculated phonon dispersion in a-IZO shows non-linear phonon instability, which can prevent the transport of phonon. The a-IZO was measured to have poor ${\kappa}$ and high electrical conductivity compared to crystalline $In_2O_3:Sn$ (c-ITO). These properties show that the TAOS can be an excellent thin-film transparent TE material. It is suggested that the TAOS can be employed to mitigate the heating problem in the transparent display devices.

  • PDF

Thermal Decomposition Synthesis of CoSb3 Nanoparticle by Hot Injection Method (열분해와 Hot Injection법을 이용한 CoSb3 나노분말합성)

  • Kim, Min-Suk;Ahn, Jong-Pil;Kim, Kyung-Ja;Park, Joo-Seok;Kim, Kyoung-Hun;Kim, Hyung-Sun
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.476-479
    • /
    • 2013
  • $CoSb_3$ with its high electrical conductivity, Seebeck coefficient and rather low thermal conductivity is quite a promising material for thermoelectric conversion applications. A potentially high figure of merit (ZT) can be achieved by a nanostructure evolution of thermoelectric materials. In this work, $CoSb_3$ nanoparticles were synthesized through a thermal decomposition method in cooperation with a hot injection technique. Nano-sized $CoSb_3$ particles were obtained through the thermal decomposition reaction between the pre-heated cobalt-oleate at $320^{\circ}C$ and the injected antimony oleate with room temperature. The results showed that the particle size was increased with increasing synthesis temperature and the crystallinity of particles was improved with temperature but the decomposition of $CoSb_3$ was observed at $320^{\circ}C$. The $CoSb_3$ particles synthesized at $300^{\circ}C$ showed a high purity and an homogeneous shape with average particle size of 26 nm.

Thermoelectric properties of SiC prepared by refined diatomite (정제 규조토로 합성한 탄화규소의 열전특성)

  • Pai, Chul-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.596-601
    • /
    • 2020
  • Silicon carbide is considered a potentially useful material for high-temperature electronic devices because of its large band gap energy and p-type or n-type conduction that can be controlled by impurity doping. Accordingly, the thermoelectric properties of -SiC powder prepared by refined diatomite were investigated for high value-added applications of natural diatomite. -SiC powder was synthesized by a carbothermal reduction of the SiO2 in refined diatomite using carbon black. An acid-treatment process was then performed to eliminate the remaining impurities (Fe, Ca, etc.). n-Type semiconductors were fabricated by sintering the pressed powder at 2000℃ for 1~5h in an N2 atmosphere. The electrical conductivity increased with increasing sintering time, which might be due to an increase in carrier concentration and improvement in grain-to-grain connectivity. The carrier compensation effect caused by the remaining acceptor impurities (Al, etc.) in the obtained -SiC had a deleterious influence on the electrical conductivity. The absolute value of the Seebeck coefficient increased with increasing sintering time, which might be due to a decrease in the stacking fault density accompanied by grain or crystallite growth. On the other hand, the power factor, which reflects the thermoelectric conversion efficiency of the present work, was slightly lower than that of the porous SiC semiconductors fabricated by conventional high-purity -SiC powder, it can be stated that the thermoelectric properties could be improved further by precise control of an acid-treatment process.

Thermoelectric Properties of the Reaction Sintered n-type β-SiC (반응소결법으로 제조한 n형 β-SiC의 열전특성)

  • Pai, Chul-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.29-34
    • /
    • 2019
  • Silicon carbide is considered to be a potentially useful material for high-temperature electronic devices, as its large energy band gap and the p-type and/or n-type conduction can be controlled by impurity doping. Particularly, electric conductivity of porous n-type SiC semiconductors fabricated from ${\beta}-SiC$ powder at $2000^{\circ}C$ in $N_2$ atmosphere was comparable to or even larger than the reported values of SiC single crystals in the temperature region of $800^{\circ}C$ to $1000^{\circ}C$, while thermal conductivity was kept as low as 1/10 to 1/30 of that for a dense SiC ceramics. In this work, for the purpose of decreasing sintering temperature, it was attempted to fabricate porous reaction-sintered bodies at low temperatures ($1400-1600^{\circ}C$) by thermal decomposition of polycarbosilane (PCS) impregnated in n-type ${\beta}-SiC$ powder. The repetition of the impregnation and sintering process ($N_2$ atmosphere, $1600^{\circ}C$, 3h) resulted in only a slight increase in the relative density but in a great improvement in the Seebeck coefficient and electrical conductivity. However the power factor which reflects the thermoelectric conversion efficiency of the present work is 1 to 2 orders of magnitude lower than that of the porous SiC semiconductors fabricated by conventional sintering at high temperature, it can be stated that thermoelectric properties of SiC semiconductors fabricated by the present reaction-sintering process could be further improved by precise control of microstructure and carrier density.

Study on Water / Energy / Mutual-changing Technology by RO/PRO Process (RO/PRO 공정에 의한 물/에너지/상호변환기술에 관한 연구)

  • Choi, Youngkwon;Yun, Taekgeun;Sohn, Jinsik;Lee, Sangho;Choi, June-Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.1
    • /
    • pp.61-65
    • /
    • 2013
  • Water is an integral part of energy production because it is used directly in many power generation systems such as hydroelectric power plants and thermoelectric power plants. Water is also used extensively in energy-resource extraction, oil, natural gas, and alternative fuels refining and processing. Recently, osmotic power systems using seawater and freshwater has been also investigated to produce electricity in a sustainable way. This study focused on the use of RO and PRO for the mutual conversion of water and energy. This system allows the production of water from seawater if there is not enough water. It can also generate electricity from salinity gradient of brine water and fresh water if there is not enough energy. To demonstrate the feasibility of this technology, a set of laboratory-scale experiments were carried out using a specially-designed RO/PRO system. The efficiency of energy conversion was theoretically estimated based on the results from the experiments. The results indicated that water and energy could be easily converted using a single device. Nevertheless, a lack of optimum membrane for this purpose was identified as a major barrier for practical application.

A Study on the Reaction Characteristics of the NH3 Oxidation over W/TiO2 (W/TiO2 촉매의 NH3 단독 산화 반응 특성 연구)

  • Kim, Geo Jong;Lee, Sang Moon;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.24 no.6
    • /
    • pp.645-649
    • /
    • 2013
  • In this study, we investigated the $NH_3$ oxidation reaction characteristic over $W/TiO_2$ catalyst in order to control $NH_3$ generated from a thermoelectric power plant or incinerator. As a result, it was found that the optimal content of tungsten in $W/TiO_2$ catalyst is 10 wt% and $NH_3$ removal efficiency decreased due to decreasing specific surface areas of catalyst with increasing tungsten contents. When $NH_3$ was injected more than 420 ppm, $NH_3$ conversion decreased at the middle temperature range. In addition, $NH_3$ conversion decreased due to the competitive adsorption of moisture and with increasing oxygen concentration, the $NH_3$ conversion increased while the $N_2$ selectivity decreased.

Evaluation of a betavoltaic energy converter supporting scalable modular structure

  • Kang, Taewook;Kim, Jinjoo;Park, Seongmo;Son, Kwangjae;Park, Kyunghwan;Lee, Jaejin;Kang, Sungweon;Choi, Byoung-Gun
    • ETRI Journal
    • /
    • v.41 no.2
    • /
    • pp.254-261
    • /
    • 2019
  • Distinct from conventional energy-harvesting (EH) technologies, such as the use of photovoltaic, piezoelectric, and thermoelectric effects, betavoltaic energy conversion can consistently generate uniform electric power, independent of environmental variations, and provide a constant output of high DC voltage, even under conditions of ultra-low-power EH. It can also dramatically reduce the energy loss incurred in the processes of voltage boosting and regulation. This study realized betavoltaic cells comprised of p-i-n junctions based on silicon carbide, fabricated through a customized semiconductor recipe, and a Ni foil plated with a Ni-63 radioisotope. The betavoltaic energy converter (BEC) includes an array of 16 parallel-connected betavoltaic cells. Experimental results demonstrate that the series and parallel connections of two BECs result in an open-circuit voltage $V_{oc}$ of 3.06 V with a short-circuit current $I_{sc}$ of 48.5 nA, and a $V_{oc}$ of 1.50 V with an $I_{sc}$ of 92.6 nA, respectively. The capacitor charging efficiency in terms of the current generated from the two series-connected BECs was measured to be approximately 90.7%.

Study on load tracking characteristics of closed Brayton conversion liquid metal cooled space nuclear power system

  • Li Ge;Huaqi Li;Jianqiang Shan
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1584-1602
    • /
    • 2024
  • It is vital to output the required electrical power following various task requirements when the space reactor power supply is operating in orbit. The dynamic performance of the closed Brayton cycle thermoelectric conversion system is initially studied and analyzed. Based on this, a load tracking power regulation method is developed for the liquid metal cooled space reactor power system, which takes into account the inlet temperature of the lithium on the hot side of the intermediate heat exchanger, the filling quantity of helium and xenon, and the input amount of the heat pipe radiator module. After comparing several methods, a power regulation method with fast response speed and strong system stability is obtained. Under various changes in power output, the dynamic response characteristics of the ultra-small liquid metal lithium-cooled space reactor concept scheme are analyzed. The transient operation process of 70 % load power shows that core power variation is within 30 % and core coolant temperature can operate at the set safety temperature. The second loop's helium-xenon working fluid has a 65K temperature change range and a 25 % filling quantity. The lithium at the radiator loop outlet changes by less than ±7 K, and the system's main key parameters change as expected, indicating safety. The core system uses less power during 30 % load power transient operation. According to the response characteristics of various system parameters, under low power operation conditions, the lithium working fluid temperature of the radiator circuit and the high-temperature heat pipe operation temperature are limiting conditions for low-power operation, and multiple system parameters must be coordinated to ensure that the radiator system does not condense the lithium working fluid and the heat pipe.

Joining and Performance of Alkali Metal Thermal-to-electric Converter (AMTEC) (알칼리금속 열전기변환장치의 접합과 출력성능)

  • Suh, Min-Soo;Lee, Wook-Hyun;Woo, Sang-Kuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.665-671
    • /
    • 2017
  • The alkali-Metal Thermal-to-electric Converter (AMTEC) is one of the promising static energy conversion technologies for the direct conversion of thermal energy to electrical energy. The advantages over a conventional energy converter are its high theoretical conversion efficiency of 40% and power density of 500 W/kg. The working principle of an AMTEC battery is the electrochemical reaction of the sodium through an ion conducting electrolyte. Sodium ion pass through the hot side of the beta"-alumina solid electrolyte (BASE) primarily as a result of the pressure difference. This pressure difference across the BASE has a significant effect on the overall performance of the AMTEC system. In order to build the high pressure difference across the BASE, hermeticity is required for each joined components for high temperature range of $900^{\circ}C$. The AMTEC battery was manufactured by utilizing robust joining technology of BASE/insulator/metal flange interfaces of the system for both structural and electrical stability. The electrical potential difference between the anode and cathode sides, where the electrons emitted from sodium ionization and recombined into sodium, was characterized as the open-circuit voltage. The efforts of technological improvement were concentrated on a high-power output and conversion efficiency. This paper discusses about the joining and performance of the AMTEC systems.

Influence of transient surface hydrogen on Aluminum catalyzed Silicon nanowire growth

  • Sin, Nae-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.125.2-125.2
    • /
    • 2016
  • Semiconductor nanowires are essential building blocks for various nanotechnologies including energy conversion, optoelectronics, and thermoelectric devices. Bottom-up synthetic approach utilizing metal catalyst and vapor phase precursor molecules (i.e., vapor - liquid - solid (VLS) method) is widely employed to grow semiconductor nanowires. Al has received attention as growth catalyst since it is free from contamination issue of Si nanowire leading to the deterioration of electrical properties. Al-catalyzed Si nanowire growth, however, unlike Au-Si system, has relatively narrow window for stable growth, showing highly tapered sidewall structure at high temperature condition. Although surface chemistry is generally known for its role on the crystal growth, it is still unclear how surface adsorbates such as hydrogen atoms and the nanowire sidewall morphology interrelate in VLS growth. Here, we use real-time in situ infrared spectroscopy to confirm the presence of surface hydrogen atoms chemisorbed on Si nanowire sidewalls grown from Al catalyst and demonstrate they are necessary to prevent unwanted tapering of nanowire. We analyze the surface coverage of hydrogen atoms quantitatively via comparison of Si-H vibration modes measured during growth with those obtained from postgrowth measurement. Our findings suggest that the surface adsorbed hydrogen plays a critical role in preventing nanowire sidewall tapering and provide new insights for the role of surface chemistry in VLS growth.

  • PDF