• 제목/요약/키워드: Thermo-mechanical coupled analysis

검색결과 92건 처리시간 0.028초

열간분말단조 공정의 열탄소성 유한요소해석 (Thermo-Elasto-Plastic Finite Element Analysis of Powder Hot Forging)

  • 김형섭
    • 한국분말재료학회지
    • /
    • 제4권2호
    • /
    • pp.83-89
    • /
    • 1997
  • A finite element analysis to solve the coupled thermomechanical problem in the plane strain upsetting of the porous metals was performed. The analysis was formulated using the yield function advanced by Lee and kim and developed using the thermo-elasto-plastic time integration procedure. The density and temperature dependent thermal and mechanical properties of porous metals were considered. The internal heat generation by the plastic deformation and the changing thermal boundary conditions corresponding to the geometry were incorporated in the program. The distributions of the stress, strain, pressure, density and temperature were predicted during the free resting period, deformation period and dwelling period of the forging process.

  • PDF

커빅 커플링을 적용한 밀-턴 스핀들의 열-구조 안정성 평가에 관한 해석적 연구 (An Analytical Study on the Thermal-Structure Stability Evaluation of Mill-Turn Spindle with Curvic Coupling)

  • 이춘만;정호인
    • 한국기계가공학회지
    • /
    • 제19권1호
    • /
    • pp.100-107
    • /
    • 2020
  • As demand for high value-added products with hard materials increases, the line center is used for producing high value-added products in many industries such as aerospace, automobile fields. The line center is a key device for smart factory automation that can improve the production efficiency and the productivity. Therefore, the development of a mill-turn line center is necessary to produce high value-added products with complex shapes flexibly. In the mill-turn process, a milling process and a turning process are combined. In particular, the turning process needs to increase the rigidity of the spindle. The purpose of this study is to analyze the thermal-structural stability through thermo-structural coupled analysis for a mill-turn spindle with a curvic coupling. The maximum temperature and thermal stability of the spindle were analyzed by thermal distribution. In addition, the thermal deformation and thermal-structural stability of the spindle were analyzed through thermo-structural coupled analysis.

플립칩 패키지 구성 요소의 열-기계적 특성 평가 (Thermo-Mechanical Interaction of Flip Chip Package Constituents)

  • 박주혁;정재동
    • 한국정밀공학회지
    • /
    • 제20권10호
    • /
    • pp.183-190
    • /
    • 2003
  • Major device failures such as die cracking, interfacial delamination and warpage in flip chip packages are due to excessive heat and thermal gradients- There have been significant researches toward understanding the thermal performance of electronic packages, but the majority of these studies do not take into account the combined effects of thermo-mechanical interactions of the different package constituents. This paper investigates the thermo-mechanical performance of flip chip package constituents based on the finite element method with thermo-mechanically coupled elements. Delaminations with different lengths between the silicon die and underfill resin interfaces were introduced to simulate the defects induced during the assembly processes. The temperature gradient fields and the corresponding stress distributions were analyzed and the results were compared with isothermal case. Parametric studies have been conducted with varying thermal conductivities of the package components, substrate board configurations. Compared with the uniform temperature distribution model, the model considering the temperature gradients provided more accurate stress profiles in the solder interconnections and underfill fillet. The packages with prescribed delaminations resulted in significant changes in stress in the solder. From the parametric study, the coefficients of thermal expansion and the package configurations played significant roles in determining the stress level over the entire package, although they showed little influence on stresses profile within the individual components. These observations have been implemented to the multi-board layer chip scale packages (CSP), and its results are discussed.

열-기계-전기 하중이 완전 연계된 지능 복합재 평판의 지그재그 고차이론 (HIGHER ORDER ZIG-ZAG PLATE THEORY FOR COUPLED THERMO-ELECTRIC-MECHANICAL SMART STRUCTURES)

  • 오진호;조맹효
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.114-117
    • /
    • 2001
  • A higher order zig-zag plate theory is developed to refine accurately predict fully coupled of the mechanical, thermal, and electric behaviors. Both the displacement and temperature fields through the thickness are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field. Smooth parabolic distribution through the thickness is assumed in the transverse deflection in order to consider transverse normal deformation. Linear zig-zag form is adopted in the electric field. The layer-dependent degrees of freedom of displacement and temperature fields are expressed in terms of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface conditions of transverse shear stresses and transverse heat flux The numerical examples of coupled and uncoupled analysis are demonstrated the accuracy and efficiency of the present theory. The present theory is suitable for the predictions of fully coupled behaviors of thick smart composite plate under mechanical, thermal, and electric loadings.

  • PDF

Numerical analysis of spalling of concrete cover at high temperature

  • Ozbolt, Josko;Periskic, Goran;Reinhardt, Hans-Wolf;Eligehausen, Rolf
    • Computers and Concrete
    • /
    • 제5권4호
    • /
    • pp.279-293
    • /
    • 2008
  • In the present paper a 3D thermo-hygro-mechanical model for concrete is used to study explosive spalling of concrete cover at high temperature. For a given boundary conditions the distribution of moisture, pore pressure, temperature, stresses and strains are calculated by employing a three-dimensional transient finite element analysis. The used thermo-hygro-mechanical model accounts for the interaction between hygral and thermal properties of concrete. Moreover, these properties are coupled with the mechanical properties of concrete, i.e., it is assumed that the mechanical properties (damage) have an effect on distribution of moisture (pore pressure) and temperature. Stresses in concrete are calculated by employing temperature dependent microplane model. To study explosive spalling of concrete cover, a 3D finite element analysis of a concrete slab, which was locally exposed to high temperature, is performed. It is shown that relatively high pore pressure in concrete can cause explosive spalling. The numerical results indicate that the governing parameter that controls spalling is permeability of concrete. It is also shown that possible buckling of a concrete layer in the spalling zone increases the risk for explosive spalling.

민감도 분석을 기반으로 한 시료의 동결 특성에 미치는 영향인자 분석 (Influencing Factors on Freezing Characteristics of Frost Susceptible Soil Based on Sensitivity Analysis)

  • 고규현;이장근;김민섭
    • 한국지반공학회논문집
    • /
    • 제36권8호
    • /
    • pp.49-60
    • /
    • 2020
  • 동상민감성 시료의 동상 거동을 평가하기 위해 완전히 결합된 열-수리-역학 연계해석을 수행하였다. 이를 위한 구성모델은 질량보존방정식, 에너지보존방정식, 힘평형방정식을 기반으로 유도되었다. 구성모델을 통해 간극수의 상변화, 간극수 유동 및 수반되는 기계적 변형 등 1차원 동결에 대한 다양한 물리적 현상을 정량적으로 고려할 수 있었다. 한편, 시료의 동상발생량 및 동상속도에 미치는 영향 인자들을 조사하기 위해 민감도 분석 연구가 수행되었다. 민감도 분석 결과에 따르면, 시료의 초기 간극비는 종속변수인 동상발생량과 동상속도에 독립적으로 큰 영향을 미치는 반면 흙 입자 열전도도 및 온도구배는 독립적으로 미치는 영향보다 두 변수 간 상호 작용을 통해 더 큰 영향을 미침을 확인하였다. 본 연구에서 고려된 인자들은 모두 동상발생량과 동상속도에 영향을 미치는 주요 인자이며, 표본시료의 동상민감성 여부를 결정하는 데에 활용될 수 있을 것이다.

Thermal response analysis of multi-layered magneto-electro-thermo-elastic plates using higher order shear deformation theory

  • Vinyas, M.;Harursampath, D.;Kattimani, S.C.
    • Structural Engineering and Mechanics
    • /
    • 제73권6호
    • /
    • pp.667-684
    • /
    • 2020
  • In this article, the static responses of layered magneto-electro-thermo-elastic (METE) plates in thermal environment have been investigated through FE methods. By using Reddy's third order shear deformation theory (TSDT) in association with the Hamilton's principle, the direct and derived quantities of the coupled system have been obtained. The coupled governing equations of METE plates have been derived through condensation technique. Three layered METE plates composed of piezoelectric and piezomagnetic phases are considered for evaluation. For investigating the correctness and accuracy, the results in this article are validated with previous researches. In addition, a special attention has been paid to evaluate the influence of different electro-magnetic boundary conditions and pyrocoupling on the coupled response of METE plates. Finally, the influence of stacking sequences, magnitude of temperature load and aspect ratio on the coupled static response of METE plates are investigated in detail.

복합재료 적층 구조물에 대한 열-기계-점탄성 연성 거동 예측을 위한 개선된 일차전단변형이론 (Enhanced First-Order Shear Deformation Theory for Thermo-Mechanical-Viscoelastic Analysis of Laminated Composite Structures)

  • 김준식;한장우
    • 한국기계가공학회지
    • /
    • 제21권4호
    • /
    • pp.53-59
    • /
    • 2022
  • In this study, an enhanced first-order shear deformation theory is proposed to efficiently and accurately predict the thermo-mechanical-viscoelastic coupled behavior of laminated composite structures. To this end, transverse shearstress and displacement fields are independently assumed, and the strain-energy relationship between these fields issystematically established using the mixed variational theorem (MVT). In MVT, the transverse shear stress fields are obtained from the third-order zigzag model, whereas the displacement fields of the conventional first-order model are considered to amplify the benefits of numerical efficiency. Additionally, a transverse displacement field with a smooth parabolic distribution is introduced to accurately predict the thermal behavior of composite structures. Furthermore, the concept of Laplace transformation is newly employed to simplify the viscoelastic problem, similar to the linear-elastic problem. To demonstrate the performance of the proposed theory, the numerical results obtained herein were compared with those available in the literature.

좌굴과 상변화를 이용한 micro actuator 의 개발 및 해석 (Thermo-pneumatic Micro Actuator with Bi-stable Membrane)

  • 송귀은;김정식;김광호;이윤표
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.233-238
    • /
    • 2003
  • A brand-new micro actuator is introduced in this paper. This device is one of thermo-pneumatic actuators, and based on two distinct principles of snap-through buckling and phase change. These coupled phenomena affect each other positively and will outrun the performance of an ordinary thermo-pneumatic actuator. Our efforts are focused on comprehensive analysis on the driving force of the actuator. For the analysis, we explain each principle and offer approximated models for the buckling and phase change. The calculation results from each model are compared to experimental data. The comparison between prediction from models and data from experiments is within the satisfaction in spite of a lot of approximations.

  • PDF