• Title/Summary/Keyword: Thermo-mechanical characteristics

Search Result 225, Processing Time 0.03 seconds

Thermo-Mechanical Properties of Al2TiO5 Ceramics Stabilized with MgO and ZrO2 Additives (MgO와 ZrO2가 첨가된 Al2TiO5 세라믹의 열·기계적 물성)

  • Kim, Da-Mi;Kim, Hyung-Tae;Kim, Hyeong-Jun;Kim, Ik-Jin;Choi, Seong-Cheol;Kim, Yong-Chan;NamKung, Jung;Ryu, Sung-Soo
    • Journal of Powder Materials
    • /
    • v.19 no.4
    • /
    • pp.253-258
    • /
    • 2012
  • The characteristics of $Al_2TiO_5$ ceramics were influenced by the additives and the heat treatment that controls the microcrack behavior at grain boundaries. The effect of additives on $Al_2TiO_5$ ceramics were investigated in terms of mechanical properties and thermal expansion at high temperature. The $Al_2TiO_5$ were synthesized at $1500^{\circ}C$, $1550^{\circ}C$ and $1600^{\circ}C$ for 2h by reaction sintering. The formation of $Al_2TiO_5$ phase was increased by additives that enhanced the volume of the microcrack that can lead to low thermal expansion. The mechanical properties of the stabilized $Al_2TiO_5$ ceramics were increased remarkably at $1100^{\circ}C$, $1200^{\circ}C$ and $1300^{\circ}C$ due to the oneset of mechanical healing of grain-bondary microcracks at a high temperature. The amount of microcrack was decreased at lower sintering temperature that causes the increase of mechanical properties at high temperature.

Comparison of Microstructure & Mechanical Properties between Mn-Mo-Ni and Ni-Mo-Cr Low Alloy Steels for Reactor Pressure Vessels (원자로 압력용기용 Mn-Mo-Ni계 및 Ni-Mo-Cr계 저합금강의 미세조직과 기계적 특성 비교)

  • Kim, Min-Chul;Park, Sang Gyu;Lee, Bong-Sang
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.3
    • /
    • pp.194-202
    • /
    • 2010
  • Application of a stronger and more durable material for reactor pressure vessels (RPVs) might be an effective way to insure the integrity and increase the efficiency of nuclear power plants. A series of research projects to apply the SA508 Gr.4 steel in ASME code to RPVs are in progress because of its excellent strength and durability compared to commercial RPV steel (SA508 Gr.3 steel). In this study, the microstructural characteristics and mechanical properties of SA508 Gr.3 Mn-Mo-Ni low alloy steel and SA508 Gr.4N Ni-Mo-Cr low alloy steel were investigated. The differences in the stable phases between these two low alloy steels were evaluated by means of a thermodynamic calculation using ThermoCalc. They were then compared to microstructural features and correlated with mechanical properties. Mn-Mo-Ni low alloy steel shows the upper bainite structure that has coarse cementite in the lath boundaries. However, Ni-Mo-Cr low alloy steel shows the mixture of lower bainite and tempered martensite structure that homogeneously precipitates the small carbides such as $M_{23}C_6$ and $M_7C_3$ due to an increase of hardenability and Cr addition. In the mechanical properties, Ni-Mo-Cr low alloy steel has higher strength and toughness than Mn-Mo-Ni low alloy steel. Ni and Cr additions increase the strength by solid solution hardening. In addition, microstructural changes from upper bainite to tempered martensite improve the strength of the low alloy steel by grain refining effect, and the changes in the precipitation behavior by Cr addition improve the ductile-brittle transition behavior along with a toughening effect of Ni addition.

A comprehensive stress analysis in a functionally graded spherical pressure vessel: Thermo-elastic, elastoplastic and residual stress analysis

  • Thaier J. Ntayeesh;Mohsen Kholdi;Soheil Saeedi;Abbas Loghman;Mohammad Arefi
    • Steel and Composite Structures
    • /
    • v.52 no.3
    • /
    • pp.377-390
    • /
    • 2024
  • Analyzing thermoelastic, elastoplastic, and residual stresses is pivotal for deepening our insights into material characteristics, particularly in the engineering of advanced materials like functionally graded materials (FGM). This research delves into these stress types within a thick-walled sphere composed of Al-SiC FGM, employing a detailed successive approximation method (SAM) to pinpoint stress distributions under varied loading scenarios. Our investigation centers on how the sphere's structure responds to different magnitudes of internal pressure. We discover that under various states-thermoelastic, elastoplastic, and residual-the radial stresses are adversely impacted, manifesting negative values due to the compressive nature induced by internal pressures. Notably, the occurrence of reverse yielding, observed at pressures above 410 MPa, merits attention due to its significant implications on the sphere's structural integrity and operational efficacy. Employing the SAM allows us to methodically explore the nuanced shifts in material properties across the sphere's thickness. This study not only highlights the critical behaviors of Al-SiC FGM spheres under stress but also emphasizes the need to consider reverse yielding phenomena to maintain safety and reliability in their application. We advocate for ongoing refinement of analytical techniques to further our understanding of stress behaviors in various FGM configurations, which could drive the optimized design and practical application of these innovative materials in diverse engineering fields.

Measurement of Thermal Expansion Coefficient of Rock using Strain Gauge (스트레인 게이지를 이용한 암석의 열팽창계수 측정)

  • Park, Chan;Kim, Hyung-Mok;Synn, Joong-Ho;Park, Yeon-Jun;Cheon, Dae-Sung
    • Tunnel and Underground Space
    • /
    • v.17 no.6
    • /
    • pp.475-483
    • /
    • 2007
  • With increasing demand for LNG as energy resources and need for $CO_2$ sequestration as greenhouse gas, more storage facilities are required in Korea. Due to the recent acute safety concerns and land shortage, storage facilities tend to be located underground. In design and construction of underground storage for low and high temperature materials, besides their mechanical characteristics, the thermal characteristics of rock under temperature variation should be understood. In this study, laboratory experiments for the measurement of the thermal expansion coefficient of rock were performed using strain gauge in consideration of the particle size of mineral and experiment temperature range. Experiment results show that thermal expansion coefficient decreased as the temperature decreases. In addition, linear thermal expansion coefficient was developed for typical Korean rocks such as granite. The results of this study can be utilized for the evaluation of thermal propagation in rock mass and the thermo-mechanical stability of underground facilities.

Structural characteristics of carbon nano tubes(CNTs) fabricated by Thermo-electrical Pulse Induced Evaporation (전계 펄스 인가 증발 방법을 이용한 탄소나노튜브의 구조적 특성 연구)

  • Park, H.Y.;Kim, H.W.;Song, C.E.;Ji, H.J.;Choi, S.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.421-421
    • /
    • 2009
  • Since carbon nanotubes (CNTs) are discovered, tremendous attentions have been paid to these materials due to their unique mechanical, electrical and chemical properties. Thereupon, many methods to produce a large scale of CNTs have been contrived by many scientists and engineers. Thus the examination of growth mechanisms of CNTs, which is essential to produce CNTs in large scale, has been an attractive issue. Though many scientists have been strived to investigate and understand the growth mechanisms of CNTs, many of them still remain controversial or unclear. Here we introduce representative growth mechanisms of CNTs, based on broadly employed fabrication methods of CNTs. We applied Thermo-electrical Pulse Induced Evaporation (TPIE) method based on field and thermal evaporation to synthesis of CNTs. However TPIE method was originally devised to fabricate graphene sheets and $Ge_2Sb_2Te_5$ nanostructures. While performing TPIE experiments to synthesize graphene, we eventually found experimental results widely supporting the growth model of CNTs proposed already. We observed the procedure of growth of CNTs obtained by TPIE method through Transmission Electron Microscopy (TEM). We believe this study provides an experimental basis on understanding and investigating carbon-based nanomaterials.

  • PDF

A Study on the Mechanical and Combustion Characteristics According to Fiber Reinforcements Weight Fraction of FRTP (섬유강화재 함유율에 따른 FRTP의 기계적 특성 및 연소특성에 관한 연구)

  • Kim, Kyoung-Jin;Eom, Sang-Yong;Kim, Ki-Hwan
    • Fire Science and Engineering
    • /
    • v.33 no.3
    • /
    • pp.21-28
    • /
    • 2019
  • To examine the mechanical and combustion characteristics of FRTP, either polycarbonate or nylon were used as a matrix, and either glass fiber or carbon fiber were used as the fiber reinforcement. The fiber reinforcement content was differentiated at 0~40 wt%. The tensile strength and heat distortion temperature increased with increasing reinforcement content. When the fiber reinforcement content was above 30 wt%, the flammability rating showed V-0. As the fiber reinforcement content increased from 0 to 40 wt%, the peak heat release rate of polycarbonate decreased by approximately 51% and that of nylon decreased by approximately 24%. The rate of CO generation decreased for a period of time, and then increased. This appears to have resulted from incomplete combustion. The rate of CO2 generation shows a similar tendency with the heat release rate. As fiber reinforcement content levels increased from 0 to 40 wt%, the CO2 peak rate of polycarbonate generation decreased by approximately 50% and that of nylon decreased by 28%.

Influence of Pad-Pivot Friction on the Performance of Tilting-Pad proceeding Bearing (패드와 피봇 사이의 마찰이 틸팅패드 저널베어링에 미치는 영향)

  • Kim, Sung-Gi;Kim, Kyung-Woong;Ha, Hyun-Cheon
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1016-1021
    • /
    • 2004
  • The need for developing a mathematical model for pad-pivot friction in tilting pad proceeding bearings has been well-recognized, since previous experimental work about the performances of the bearings hypothesized that the friction in the bearings is closely related to their performances. Especially, the sliding friction between pad and pivot in the ball and socket type of the bearings can influence the performance of the bearing. We propose a mathematical model for pad-pivot friction in the ball and socket type, which considers the geometrics of the pad and pivot of the bearings, by assuming the sliding friction in the ball and socket bearing as Coulomb friction. By utilizing the proposed model for pad-pivot friction, we show the analysis of Reynolds equation and energy equation, which explain the thermo-hydrodynamic characteristics of tilting pad proceeding bearings, by taking into account the turbulence and inlet pressure building as well. The results of the study show that the performance of titling-pad proceeding bearings can be greatly influenced by the pad-pivot friction. In particular, we have shown that the analysis of the pad-pivot friction is useful to explain the static proceeding loci and the dynamic characteristics of the ball and socket type of the bearings. Furthermore, for a given operating condition, we can obtain various equilibrium states which satisfy the static equilibrium conditions, by considering the pad-pivot friction.

  • PDF

NUMERICAL APPROACH TO MICROSTRUCTURAL CHARACTERIZATIONS FOR DENSE AND POROUS THERMAL BARRIER COATINGS

  • Kim, Seok-Chan;Go, Jae-Gwi;Jung, Yeon-Gil;Paik, Un-Gyu
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.15 no.3
    • /
    • pp.223-231
    • /
    • 2011
  • During spray coating, especially in an air plasma spray (APS), pores, cracks, and splat boundaries are developed and those factors exert influence on thermomechanical properties such as elastic modulus, thermal conductivity, and coefficient of thermal expansion. Moreover, the thermo mechanical properties are crucial elements to determine the thermoelastic characteristics, for instance, temperature distribution, displacements, and stresses. Two types of thermal barrier coating (TBC) model, the dense and porous microstructures, are taken into account for the analysis of microstructural characterizations. $TriplexPro^{TM}$-200 system was applied to prepare TBC samples, and the METECO 204 C-NS powder is adopted for the relatively porous microstructure and METECO 204 NS powder for the dense microstructure in the top coat of TBCs. Governing partial differential equations were derived based on the thermoelastic theory and approximate estimates for the thermoelastic characteristics were obtained using a finite volume method for the governing equations.

ULTRAVIOLET MICROSCOPIC STUDY ON LIGNIN DISTRIBUTION IN THE FIBER CELL WALL OF BCTMP

  • Seung-Lak YooN;Yasuo KOJIMA;Lee, Seon-Ho
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.04b
    • /
    • pp.375-380
    • /
    • 1999
  • In order to improve the optical properties of high yield pulp, bleached chemi-thermo-mechanical pulp (BCTMP) was produced from CTMP of Betula maximowicziana Regel by two staged ozone-hydrogen peroxide bleaching. This pulp was used for the evaluation of the improvement of optical properties, chemical characteristics of lignin in fiber, and the relationship between lignin and optical properties in fiber cell wall. By hydrogen peroxide treatment, the brightness was improved, but the post color number (PC No.) was not. There was little improvement on optical properties by ozone treatment, but his could be solved by using two staged ozone-hydrogen peroxide bleaching. The hydrogen peroxide treatment did not make nay change on chemical characteristics of lignin in cell wall, but by ozone treatment, it was found that the non-aromatic conjugated structure was existed in the surface of cell wall, but this could be removed by hydrogen peroxide treatment in two staged ozone-hydrogen peroxide treatment. Therefore, the optical properties was significantly improved due to the removal of non-aromatic conjugated structure.

Introduction to Tasks in the International Cooperation Project, DECOVALEX-2023 for the Simulation of Coupled Thermohydro-mechanical-chemical Behavior in a Deep Geological Disposal of High-level Radioactive Waste (고준위방사성폐기물 처분장 내 열-수리-역학-화학적 복합거동 해석을 위한 국제공동연구 DECOVALEX-2023에서 수행 중인 연구 과제 소개)

  • Kim, Taehyun;Lee, Changsoo;Kim, Jung-Woo;Kang, Sinhang;Kwon, Saeha;Kim, Kwang-Il;Park, Jung-Wook;Park, Chan-Hee;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • v.31 no.3
    • /
    • pp.167-183
    • /
    • 2021
  • It is essential to understand the complex thermo-hydro-mechanical-chemical (THMC) coupled behavior in the engineered barrier system and natural barrier system to secure the high-level radioactive waste repository's long-term safety. The heat from the high-level radioactive waste induces thermal pressurization and vaporization of groundwater in the repository system. Groundwater inflow affects the saturation variation in the engineered barrier system, and the saturation change influences the heat transfer and multi-phase flow characteristics in the buffer. Due to the complexity of the coupled behavior, a numerical simulation is a valuable tool to predict and evaluate the THMC interaction effect on the disposal system and safety assessment. To enhance the knowledge of THMC coupled interaction and validate modeling techniques in geological systems. DECOVALEX, an international cooperation project, was initiated in 1992, and KAERI has participated in the projects since 2008 in Korea. In this study, we introduced the main contents of all tasks in the DECOVALEX-2023, the current DECOVALEX phase, to the rock mechanics and geotechnical researchers in Korea.