• Title/Summary/Keyword: Thermo-mechanical analysis

Search Result 565, Processing Time 0.027 seconds

Thermo-Flow Analysis of Offset-Strip Fins according to Blockage Ratio (옵셋 스트립 휜의 막음비에 따른 열 및 유동 분석)

  • Kim, Min-Soo;Yu, Seung-Hwan;Lee, Kwan-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1084-1089
    • /
    • 2009
  • A numerical study of thermo-flow characteristics is presented to determine correlations of pressure drop and heat transfer for offset-strip fins. As a blockage ratio increased, previous correlations underestimate f values in laminar and turbulent regimes, and overestimate j values in laminar regime. Therefore, new correlations, which are applicable to fins with blockage ratios more than 15%, are presented.

  • PDF

Thermo-Flow Analysis of Offset-Strip Fins according to Prandtl Number (Prandtl 수에 따른 옵셋 스트립 핀에서의 열 및 유동 분석)

  • Joo, Youn-Sik;Kong, Dong-Hyun;Lee, Kwan-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.6
    • /
    • pp.340-346
    • /
    • 2009
  • This paper numerically investigates thermo-flow characteristics of offset strip fins to obtain a correlation between heat transfer and pressure drop. The flow was divided into three regimes, i.e. laminar, transition and turbulent. The predicted j and f values from the SST k-$\omega$ turbulence model agreed with previous correlations with the error less than 20% in transition and turbulent regimes. Heat transfer and pressure drop were predicted by varying Prandtl number from 0.5 to 40. The Prandtl number showed little effects on pressure drop but had great effect on the heat transfer characteristics. An overall correlation to predict j was suggested by incorporating the effect of Pr and a new j correlation was suggested for each Pr.

Thermo-Flow Analysis of Offset-strip fins according to Prandtl Number (Plandtl 수에 따른 옵셋 스트립핀에서의 열 및 유동 분석)

  • Joo, Youn-Sik;Kim, Min-Soo;Lee, Kwan-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.233-238
    • /
    • 2008
  • This paper numerically investigates thermo-flow characteristics of offset strip fins to obtain a correlation between heat transfer and pressure drop. The flow was divided into three regimes, i.e. laminar, transition and turbulent. The predicted j and f values from the SST k-$\omega$ turbulence model agreed with previous correlations with the error less than 20% in transition and turbulent regimes. Heat transfer and pressure drop were predicted by varying Prandtl number from 0.5 to 40. The Prandtl number showed little effects on pressure drop but had great effect on the heat transfer characteristics. An overall correlation to predict j was suggested by incorporating the effect of Pr and a new j correlation was suggested for each Pr.

  • PDF

Thermo-Mechanical Behavior of Type 304 Stainless Slab in Hot Charge Rolling Condition (스테인리스 304 슬라브의 HCR 조건시 열적/기계적 거동)

  • C.G. Sun;S.M. Hwang
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.183-186
    • /
    • 2003
  • A finite element-based, integrated process model is presented for a three dimensional, coupled analysis of the thermal and mechanical behavior of type 304 stainless slab during hot charge rolling (HCR) and cold charge rolling (CCR) processes. The validity of the proposed model is examined through comparison with measurements. The susceptibility on micro-crack initiation or propagation due to the thermal stress in these two different process conditions was examined. The model's capability of revealing the effect of diverse process parameters is demonstrated through a series of process simulation.

  • PDF

A Study on the Overlay Model for Description of Hysteresis Behavior of a Material under Non-isothermal Loading (변온 하중하에 있는 재료의 이력거동 예측을 위한 다층 모델에 관한 연구)

  • Kim, Sang-Ho;Seo, Dong-Hun;Yeo, Tae-In
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.133-142
    • /
    • 2010
  • The present work focuses on the characterization of material parameters of the Overlay(multilinear hardening) model for analyzing the non-isothermal cyclic deformation. In the previous study, all the parameters were especially based on the Overlay theories, and a simple method was suggested to find out the best material parameters for the isothermal cyclic deformation analysis. Based on the previous research this paper f dther improves the isothermal parameters and suggests how to apply the isothermal parameters to the non-isothermal conditions especially for the description of TMF(Thermo-Mechanical Fatigue) hysteresis behavior. The parameters are determined and calibrated using 400 series stainless steel test data in the reference papers. For the implementation into ABAQUS, a user subroutine is developed by means of ABAQUS/UMAT. The finite element results show good agreement with test for the case of uniaxial non-isothermal cyclic loading, signifying the proposed method can be used in the TMF analysis of the converter-inserted heavy duty muffler system and the stainless steel exhaust-manifold system which are to be done in our future research.

Comparison of the Properties of Poly(butylene terephthalate) Nanocomposite Fibers with Different Organoclays

  • Kim, Jeong-Cheol;Chang, Jin-Hae
    • Macromolecular Research
    • /
    • v.15 no.5
    • /
    • pp.449-458
    • /
    • 2007
  • The aims of this study were to investigate the intercalation of polymer chains with organoclays and improve the thermo-mechanical properties of poly(butylene terephthalate) (PBT) hybrids by comparing PBT hybrids synthesized using two different organoclays. The organoclays; dodecyltriphenylphosphonium-montmorillonite ($C_{12}PPh-MMT$) and dodecyltriphenylphosphonium-mica ($C_{12}PPh-Mica$), were used to fabricate the PBT hybrid fibers. Variations in the properties of the hybrid fibers with the organoclays within the polymer matrix, as well as the draw ratio (DR), are discussed. The thermo-mechanical properties and morphologies of the PBT hybrid fibers were characterized using differential scanning calorimetry, thermogravimetric analysis, wide-angle X-ray diffraction, electron microscopy and mechanical tensile properties analysis. The nanostructures of the hybrid fibers were determined using both scanning and transmission electron microscopies, which showed some of the clay layers to be well dispersed within the matrix polymer, although some clustered or agglomerated particles were also detected. The thermal properties of the hybrid fibers were found to be better than those of the pure PBT fibers at a DR = 1. The tensile mechanical properties of the $C_{12}PPh-MMT$ hybrid fibers were found to worsen with increasing DR. However, the initial moduli of the $C_{12}PPh-Mica$ hybrid fibers were found to slightly increase on increasing the DR from 1 to 18.

Geometrically nonlinear thermo-mechanical bending analysis of deep cylindrical composite panels reinforced by functionally graded CNTs

  • Salami, Sattar Jedari;Boroujerdy, Mostafa Sabzikar;Bazzaz, Ehsan
    • Advances in nano research
    • /
    • v.10 no.4
    • /
    • pp.385-395
    • /
    • 2021
  • This research concentrates on the effects of distributions and volume fractions of carbon nanotubes (CNT) on the nonlinear bending behavior of deep cylindrical panels reinforced by functionally graded carbon nanotubes under thermo-mechanical loading, hitherto not reported in the literature. Assuming the effects of shear deformation and moderately high value of the radius-to-side ratio (R/a), based on the first-order shear deformation theory (FSDT) and von Karman type of geometric nonlinearity, the governing system of equations is obtained. The analytical solution of field equations is carried out using the Ritz method together with the Newton-Raphson iterative scheme. The effects of radius-to-side ratio, temperature change, and boundary conditions on the nonlinear response of the functionally graded carbon nanotubes reinforced composite deep cylindrical panel (FG-CNTRC) are investigated. It is concluded that, among the five possible distribution patterns of CNT, FG-V CNTRC deep cylindrical panel is strongest with the highest bending moment and followed by UD, X, O, and Ʌ-ones. Also, considering the present deep cylindrical panel formulation increases the accuracy of the results. Hence, according to the noticeable amount of R/a in FG-CNTRC cylindrical panels, it is mandatory to apply strain-displacement relations of deep cylindrical panels for bending analysis of FG-CNTRC which certainly is desirable for industrial application.