• Title/Summary/Keyword: Thermo-fluid analysis

Search Result 103, Processing Time 0.021 seconds

Quasi-dimensional Analysis of Combustion and Emissions in a Stratified GDI Engine under Ultra-lean Conditions (유사차원해석 모델을 이용한 초희박 조건에서의 가솔린 직분사 엔진 연소 및 배기 예측)

  • Lee, Jaeseo;Huh, Kang Yul;Kwon, Hyuckmo;Park, Jae In
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.4
    • /
    • pp.402-409
    • /
    • 2015
  • In this study a quasi-dimensional model is developed to predict the combustion process and emissions of a GDI engine under ultra-lean conditions. Combustion of a GDI engine condition is modeled as two simultaneous processes to consider significant fuel stratification. The first process is premixed flame propagation described as burning in a hemispherically propagating flame. The second is diffusion-controlled combustion modeled as mixing of multiple spray zones in the burned gas region. Mixing is an important factor in ultra-lean conditions leaving stratified mixture of developing sprays behind the propagating premixed flame. Sheet breakup and Hiroyasu models are applied to predict the velocity of a hollow cone spray. Validation is performed against measured pressures and NOx and CO emissions at different load and rpm conditions in the test engine.

Plow Analysis for Radiating Fluid with Density Variation affected by Overheat Ratio (과열비에 따른 유체밀도 변화를 고려한 복사유체 유동 해석)

  • Han C. Y.;Chae J. W.;Park E. S.;Nam M. G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.75-78
    • /
    • 2005
  • A numerical investigation has been performed to discuss the radiation-affected steady-laminar natural convection in an enclosure under a large temperature difference. Due to inherent nature of this study, the Boussinesq approximation is no longer valid. Therefore the radiating fluid in an enclosure is treated as a ideal gas. To examine the effects of thermal radiation on thermo-fluid dynamic behaviors in complex geometries, two incomplete partitions are introduced. Based on the results of this study, the dispositions of incomplete partitions with radiatively participating medium are found to incur a distinct difference in fluid-dynamic as well as thermal behavior.

  • PDF

Thermal Distribution of Bi-Te Thermoelectric Module with the thickness of Polymer Sheet (고분자 필름의 두께변화에 따른 Bi-Te계 열전모듈의 열분포 특성)

  • Byeon, Jong-Bo;Kim, Bong-Seo;Park, Soo-Dong;Lee, Hee-Woong;Kim, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1675-1677
    • /
    • 2005
  • In case of attaching thermoelectric module and heat source, the polymer sheet is attached on the $AL_{2}O_3$ plate, which Is cold and hot side of thermoelectric module, in order to enhance mechanical safty of the system. It is impossible to calculate the exact distribution of temperature and flow pattern of inner gap of thermoelectric module. Therefore CFD(Computational Fluid Dynamics) analysis was executed to determine the thermo-fluid phenomena and distribution by Fluent. As the result of these analysis, heat transfer was dominated by conduction and the difference of temperature was linear distribution according to the thickness of polymer sheet.

  • PDF

Research on the Output Characteristic of Thermoelectric Module according to the thickness variation of Polymer Pad (고분자 필름의 두께변화에 따른 열전소자의 출력 특성변화에 관한 연구)

  • Jang, Ho-Sung;Kim, Jae-Jung;Kim, In-Kwan;Kim, Young-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.976-981
    • /
    • 2006
  • In case of attaching thermoelectric module and heat source, the polymer pad is attached on the $Al_2O_3$ plate, which is cooling side of thermoelectric module, in order to enhance mechanical safety of the system. It is impossible to calculate the exact distribution of temperature and flow pattern of inner gap of thermoelectric module. Therefore CFD(Computational Fluid Dynamics) analysis was executed to determine the thermo-fluid phenomena and distribution by Fluent. As the result of these analysis, heat transfer was dominated by conduction and the difference of temperature was linear distribution according to the thickness of polymer sheet.

  • PDF

Numerical Analysis of a Weak Shock Wave Propagating in a Medium Using Lattice Boltzmann Method (LBM)

  • Kang, Ho-Keun;Michihisa Tsutahara;Ro, Ki-Deok;Lee, Young-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2034-2041
    • /
    • 2003
  • This study introduced a lattice Boltzmann computational scheme capable of modeling thermo hydrodynamic flows with simpler equilibrium particle distribution function compared with other models. The equilibrium particle distribution function is the local Maxwelian equilibrium function in this model, with all the constants uniquely determined. The characteristics of the proposed model is verified by calculation of the sound speeds, and the shock tube problem. In the lattice Boltzmann method, a thermal fluid or compressible fluid model simulates the reflection of a weak shock wave colliding with a sharp wedge having various angles $\theta$$\sub$w/. Theoretical results using LBM are satisfactory compared with the experimental result or the TVD.

Numerical Modeling of Hydrazine-Fueled Arcjet Thruster (하이드라진(N2H4) 아크젯 추력기의 수치적 모델링)

  • Shin, Jae-Ryul;Lee, Dae-Sung;Oh, Se-Jong;Choi, J.-Y.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.907-915
    • /
    • 2008
  • The computational fluid dynamic analysis has been conducted for the thermo-chemical flow field in an arcjet thruster with mono-propellant Hydrazine (N2H4) as a working fluid. The Reynolds Averaged Navier-Stokes (RANS) equations are modified to analyze compressible flows with the thermal radiation and electric field. the Maxwell equation, which is loosely coupled with the fluid dynamic equations through the Ohm heating and Lorentz forces, is adopted to analyze the electric field induced by the electric arc. The chemical reactions of Hydrazine were assumed to be infinitely fast due to the high temperature field inside the arcjet thruster. The chemical and the thermal radiation models for the nitrogen-hydrogen mixture and optical thick media respectively, were incorporated with the fluid dynamic equations. The results show that performance indices of the arcjet thruster with 1kW arc heating are improved by amount of 180% in thrust and 200% in specific impulse more than frozen flow. In addition thermo-physical process inside the arcjet thruster is understood from the flow field results.

Thermal diffusion and diffusion thermo effects on an unsteady heat and mass transfer magnetohydrodynamic natural convection Couette flow using FEM

  • Raju, R. Srinivasa;Reddy, G. Jithender;Rao, J. Anand;Rashidi, M.M.
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.349-362
    • /
    • 2016
  • The numerical solutions of unsteady hydromagnetic natural convection Couette flow of a viscous, incompressible and electrically conducting fluid between the two vertical parallel plates in the presence of thermal radiation, thermal diffusion and diffusion thermo are obtained here. The fundamental dimensionless governing coupled linear partial differential equations for impulsive movement and uniformly accelerated movement of the plate were solved by an efficient Finite Element Method. Computations were performed for a wide range of the governing flow parameters, viz., Thermal diffusion (Soret) and Diffusion thermo (Dufour) parameters, Magnetic field parameter, Prandtl number, Thermal radiation and Schmidt number. The effects of these flow parameters on the velocity (u), temperature (${\theta}$) and Concentration (${\phi}$) are shown graphically. Also the effects of these pertinent parameters on the skin-friction, the rate of heat and mass transfer are obtained and discussed numerically through tabular forms. These are in good agreement with earlier reported studies. Analysis indicates that the fluid velocity is an increasing function of Grashof numbers for heat and mass transfer, Soret and Dufour numbers whereas the Magnetic parameter, Thermal radiation parameter, Prandtl number and Schmidt number lead to reduction of the velocity profiles. Also, it is noticed that the rate of heat transfer coefficient and temperature profiles increase with decrease in the thermal radiation parameter and Prandtl number, whereas the reverse effect is observed with increase of Dufour number. Further, the concentration profiles increase with increase in the Soret number whereas reverse effect is seen by increasing the values of the Schmidt number.

Development of a Model for Fluid Analysis of Water Jet Using Automatic Javan(Salted-dry Seaweeds) Dryer Machine (전자동 자반건조기 제작에 이용할 Water Jet의 유동해석 모델)

  • Kim, Ill-Soo;Park, Chang-Eun;Jeung, Young-Jae;Son, Joon-Sik;Nam, Ki-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.5
    • /
    • pp.53-58
    • /
    • 1998
  • This paper concentrates on the development of a computational design program to determine nozzle size in water jet, combing the numerical optimization technique with the flow analysis code. To achieve the above objective, a two-dimensional model was developed for investigating the fluid flow in water jet and calculating the velocity and pressure distributions. The mathematical formulation as a standard ${k}-\varepsilon$ model was solved employing a general thermo fluid-mechanics computer program, PHOENICS code, which is based on the Semi-Implicit Method Pressure Linked Equations(SIMPLE) algorithm. The developed code was applied to water jet design to determine the nozzle size, and investigated the effect of the change of nozzle location. Calculated results showed that the flow pattern is not changed as the change of nozzle location.

  • PDF

Analysis of Cooling Characteristics according to Heating Reduction System Displacement of Major Heating Region on Power Inverter (전력 역변환장치 주요발열부의 열 저감 시스템 변위에 따른 냉각 특성해석)

  • Kim, Min-Seok;Kim, Yong-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.2
    • /
    • pp.261-266
    • /
    • 2015
  • Power system for renewable energy is composed of module, transform DC power into AC power inverter, control power flow and device for a charge of the grid-connected. Power system for renewable energy produce the most DC power, when this system is much insolation in summer and daytime. But if the certain temperature rises above, the essential grid-connected power inverter is take a nose dive. There, in this paper, we propose an improved reduction of heating system. In addition, selection of the most serious heat region and through analysis of temperature characteristics according to location and distance derive the optimal model.