• Title/Summary/Keyword: Thermo-Flow

Search Result 300, Processing Time 0.026 seconds

An Experimental Study on Laminar Flow Velocity by Using Thermo-sensitive Liquid Crystal (감온액정을 이용한 층류유동의 속도장에 관한 실험적 연구)

  • Chang, Tae-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.1
    • /
    • pp.19-24
    • /
    • 2004
  • An experimental investigation was performed to study the characteristics of laminar water flow in a horizontal circular tube by using liquid crystal. A simultaneous measurement technique has been employed to measure the velocity field in a two-dimensional cross section of fluid flow. This study found the velocity distributions for Re = 1,594 ~ 2,510 along longitudinal sections and the results appear to be physically reasonable. To determine some characteristics of the laminar flow, 2D PIV technique is employed for velocity measurement by using liquid crystal in water. The experimental rig was manufactured from an acryle tube. The test tube diameter of 25mm, and a length of 1200mm. The used algorithm is the gray level cross-correlation method by using Kimura et al. in 1986.

  • PDF

A Measurement of Temperature by TLC without Contact and A Study of Thermocapillary Flow under Ground-based Conditions (TLC 비접촉 온도측정과 중력장에서 열모세관 현상 구명)

  • 엄용균;유재봉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1071-1075
    • /
    • 2003
  • In a closed square cavity filled with a liquid, a cooled the upper horizontal wail and a heated the lower horizontal wall, the flow isn't generated under the ground-based condition when Rayleigh number is lower than 1700. In such case the flow phenomena near an air bubble under a cooled horizontal wall were investigated. The temperature and the flow fields were studied by using the Thermo-sensitive Liquid-Crystal and the image processing. The qualitative analysis for the temperature and the flow fields were carried out by applying the image processing technique to the original data. Injecting bubble at the center point of upper cooled wall, the symmetry shape of two vortexes near an air bubble was observed. The bubble size increased, the size of velocity and the magnitude of velocity increased. In spite of elapsed time, a pair of two vortexes was the unique and steady-state flow in a square cavity and wasn't induce to the other flow in the surround region.

  • PDF

A Study of Heat Transfer Phenomena due to a Formed Gas Bubble under Heat-Conduction Domain in A Closed Square Cavity (TLC 를 이용한 사각공동내의 열전도 영역에 기포의 형성으로 인한 열전달 현상 구명)

  • Eom, Young-Kyoon;You, Jae-Bong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.85-89
    • /
    • 2003
  • In a closed square cavity filled with a liquid, a cooled the upper horizontal wall and a heated the lower horizontal wall, the flow isn't generated under the ground-based condition when Rayleigh number is lower than 1700. In such case the flow phenomena near an air bubble under a cooled horizontal wall were investigated. The temperature and the flow fields were studied by using the Thermo-sensitive Liquid-Crystal and the image processing. The qualitative analysis for the temperature and the flow fields were carried out by applying the image processing technique to the original data. Injecting bubble at the center point of upper cooled wall, the symmetry shape of two vortexes near an air bubble was observed. The bubble size increased, the size of velocity and the magnitude of velocity increased. In spite of elapsed time, a pair of two vortexes was the unique and steady-state flow in a square cavity and wasn't induce to the other flow in the surround region.

  • PDF

Analysis of Heat Flow and Deformation in Laser Welding of Small Gas Pressure vessel (소형 가스용기 레이저 용접부의 열유동 및 변형해석에 관한 연구)

  • 박상국;김재웅;김기철
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.104-111
    • /
    • 2001
  • This study presents an analysis method for heat flow and deformation of sheet metal laser welding. A heat source model for 2-dimensional heat flow analysis of laser welding process was suggested in this paper. To investigate the availability of the heat source model, the analysis results were compared and estimated with the results of previous researches. We could get a good agreement between the results of numerical analysis and experiments in the temperature distribution of weldment. Due to the characteristics of welding process, some kinds of deformations are usually generated in a welded structure. Generally, the degree of deformation is dependent on the welding sequence constraints as well as input power Therefore, in this paper we evaluate the deformation of gas pressure vessel according to the welding sequence and input power. In the analysis of weld deformation, 2-dimensional thermo-elasto-plastic analysis was performed for the gas pressure vessel by using a commercial FE program package.

  • PDF

Thermo-Flow Analysis of Offset-Strip Fins according to Prandtl Number (Prandtl 수에 따른 옵셋 스트립 핀에서의 열 및 유동 분석)

  • Joo, Youn-Sik;Kong, Dong-Hyun;Lee, Kwan-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.6
    • /
    • pp.340-346
    • /
    • 2009
  • This paper numerically investigates thermo-flow characteristics of offset strip fins to obtain a correlation between heat transfer and pressure drop. The flow was divided into three regimes, i.e. laminar, transition and turbulent. The predicted j and f values from the SST k-$\omega$ turbulence model agreed with previous correlations with the error less than 20% in transition and turbulent regimes. Heat transfer and pressure drop were predicted by varying Prandtl number from 0.5 to 40. The Prandtl number showed little effects on pressure drop but had great effect on the heat transfer characteristics. An overall correlation to predict j was suggested by incorporating the effect of Pr and a new j correlation was suggested for each Pr.

Thermo-Flow Analysis of Offset-strip fins according to Prandtl Number (Plandtl 수에 따른 옵셋 스트립핀에서의 열 및 유동 분석)

  • Joo, Youn-Sik;Kim, Min-Soo;Lee, Kwan-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.233-238
    • /
    • 2008
  • This paper numerically investigates thermo-flow characteristics of offset strip fins to obtain a correlation between heat transfer and pressure drop. The flow was divided into three regimes, i.e. laminar, transition and turbulent. The predicted j and f values from the SST k-$\omega$ turbulence model agreed with previous correlations with the error less than 20% in transition and turbulent regimes. Heat transfer and pressure drop were predicted by varying Prandtl number from 0.5 to 40. The Prandtl number showed little effects on pressure drop but had great effect on the heat transfer characteristics. An overall correlation to predict j was suggested by incorporating the effect of Pr and a new j correlation was suggested for each Pr.

  • PDF

Development of Numerical Analysis Model for the Calculation of Thermal Conductivity of Thermo-syphon (열 사이펀의 열전도율 산정을 위한 수치해석 모델 개발)

  • Park, Dong-Su;Shin, Mun-Beom;Seo, Young-Kyo
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.1
    • /
    • pp.5-15
    • /
    • 2021
  • The areas consisting of frost susceptible soils in cold regions, such as the Arctic area, have problems of frost heave and thaw settlement due to the seasonal air temperature changes and internal temperature of installed structures. Ground stabilization methods for preventing frost heave and thaw settlement of frost susceptible soils include trenching, backfilling and thermo-syphon. The thermo-syphon is the method in which refrigerant can control the ground temperature by transferring the ground temperature to atmosphere in the from of two-phase flow through the heat circulation of the internal refrigerant. This numerical study applied the function of these thermo-syphon as the boundary condition through user-subroutine coding inside ABAQUS and compared and analyzed the temperature results of laboratory experiments.

Thermal diffusion and diffusion thermo effects on an unsteady heat and mass transfer magnetohydrodynamic natural convection Couette flow using FEM

  • Raju, R. Srinivasa;Reddy, G. Jithender;Rao, J. Anand;Rashidi, M.M.
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.349-362
    • /
    • 2016
  • The numerical solutions of unsteady hydromagnetic natural convection Couette flow of a viscous, incompressible and electrically conducting fluid between the two vertical parallel plates in the presence of thermal radiation, thermal diffusion and diffusion thermo are obtained here. The fundamental dimensionless governing coupled linear partial differential equations for impulsive movement and uniformly accelerated movement of the plate were solved by an efficient Finite Element Method. Computations were performed for a wide range of the governing flow parameters, viz., Thermal diffusion (Soret) and Diffusion thermo (Dufour) parameters, Magnetic field parameter, Prandtl number, Thermal radiation and Schmidt number. The effects of these flow parameters on the velocity (u), temperature (${\theta}$) and Concentration (${\phi}$) are shown graphically. Also the effects of these pertinent parameters on the skin-friction, the rate of heat and mass transfer are obtained and discussed numerically through tabular forms. These are in good agreement with earlier reported studies. Analysis indicates that the fluid velocity is an increasing function of Grashof numbers for heat and mass transfer, Soret and Dufour numbers whereas the Magnetic parameter, Thermal radiation parameter, Prandtl number and Schmidt number lead to reduction of the velocity profiles. Also, it is noticed that the rate of heat transfer coefficient and temperature profiles increase with decrease in the thermal radiation parameter and Prandtl number, whereas the reverse effect is observed with increase of Dufour number. Further, the concentration profiles increase with increase in the Soret number whereas reverse effect is seen by increasing the values of the Schmidt number.

An experimental study on thermal storage characteristics in the thermally stratified water storage system (성층 축열 시스템에서의 열 저장 특성에 관한 실험적 연구)

  • Koh, J.Y.;Kim, Y.K.;Lee, C.M.;Yim, C.S.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.4
    • /
    • pp.37-46
    • /
    • 2001
  • This study describes the experimental study that focuses on the effects that distributor shapes and flow rate variations have an influence on the stratification in a rectangular thermal storage tank. Experiments were carried out under the conditions that the flow rates of working fluid are 20, 10 and $5\ell$/min. The storage tank is initially filled with chilled water of $1^{\circ}C$, and is extracted through the bottom at the same rate as the return warm water from load is entered through the distributor at the top of the tank. The thermo-cline forms at the top of the storage tank as the warm water enters the tank from the load through the distributor and the thermo-cline thickness increases with time. Emphasis is given to the effects of mixing at the inlet that increases the thermo-cline decay Flow rate variation and inlet distributor shapes are the important parameters in deciding the performance of a storage system. Stratification degree increases with decreasing in inlet flow rate under $10\ell$/min. Experiments shows that better thermal stratification can be obtain using the distributor to limit momentum mixing at the inlets and outlets. Also, 12% of improvement in the thermal energy usage has been achieved using the modified distributor discharging same flow rate in each lateral ports.

  • PDF

Flow Measurement in a Clothes Dryer (의류 건조기 내의 유동 계측)

  • Myung, Hwan-Joo;Yoon, Sang-Heon
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.175-178
    • /
    • 2001
  • In a clothes dryer, various thermo-fluid flow phenomena occur such as the heat and mass transfer in the process of removing moisture from clothes, the flow field generated by the fan, and the various flow characteristics from the complex flow paths. The study and understanding of such phenomena is an important factor in increasing the performance of dryers. In this study, as part of a dryer research, the flow field inside a vented dryer was measured using PIV, which the result will be used as the basic material in analyzing the various flow phenomena.

  • PDF