• Title/Summary/Keyword: Thermite Reaction

Search Result 15, Processing Time 0.025 seconds

Design for Thermite Reaction Efficiency Improvement of Nb-Ni Mother Alloy (Nb-Ni 모 합금의 테르밋 반응 효율 향상 방안 설계)

  • Jin Uk Gwon;Hye Sung Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.1
    • /
    • pp.33-39
    • /
    • 2023
  • In this study, the effect of mixing condition of raw material powders possessing various particle size and particle size distribution on thermite reaction efficiency was investigated. When fine raw powders are used, rather the reaction yield tends to decrease due to agglomeration. In contrast, coarse raw powders make deteriorate the contact area between raw material powders containing Al reducing agent. To ensure the optimal thermite reaction efficiency, it is required to optimize a mixture condition of raw material powders prior to thermite reaction. From the current experiment, the maximum thermite reaction efficiency is 77%, which came from Nb2O5 + NiO +Al mixtures with size distribution from 9.25 to 22.63 ㎛.

Thermite Reaction Between CuO Nanowires and Al for the Crystallization of a-Si

  • Kim, Do-Kyung;Bae, Jung-Hyeon;Kim, Hyun-Jae;Kang, Myung-Koo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.5
    • /
    • pp.234-237
    • /
    • 2010
  • Nanoenergetic materials were synthesized and the thermite reaction between the CuO nanowires and the deposited nano-Al by Joule heating was studied. CuO nanowires were grown by thermal annealing on a glass substrate. To produce nanoenergetic materials, nano-Al was deposited on the top surface of CuO nanowires. The temperature of the first exothermic reaction peak occurred at approximately $600^{\circ}C$. The released heat energy calculated from the first exothermic reaction peak in differential scanning calorimetry, was approximately 1,178 J/g. The combustion of the nanoenergetic materials resulted in a bright flash of light with an adiabatic frame temperature potentially greater than $2,000^{\circ}C$. This thermite reaction might be utilized to achieve a highly reliable selective area crystallization of amorphous silicon films.

CORRELATION BETWEEN MICROSTRUCTURE AND EXOTHERMIC REACTION KINETICS OF Al-CuO THERMITE NANOCOMPOSITE POWDERS FABRICATED BY CRYOMILLING

  • MINSEOK OH;KWANIL KIM;BYUNGMIN AHN
    • Archives of Metallurgy and Materials
    • /
    • v.64 no.3
    • /
    • pp.931-934
    • /
    • 2019
  • Al-CuO is a thermite material exhibiting the exothermic reaction only when aluminum melts. For wide spread of its application, the reaction temperature needs to be reduced in addition to the enhancement of total reaction energy. In the present study, a thermite nanocomposite with a large contact area between Al and CuO was fabricated in order to lower the exothermic reaction temperature and to improve the reactivity. A cryomilling process was performed to achieve the nanostructure, and the effect of composition on the microstructure and its reactivity was studied in detail. The microstructure was characterized using SEM and XRD, and the thermal property was analyzed using DSC. The results show that as the molar ratio between Al and CuO varies, the fraction of uniform nanocomposite structure was changed affecting the exothermic reaction characteristics.

Controlling Particle Size of Recycled Copper Oxide Powder for Copper Thermite Welding Characteristics (동 테르밋 용접 특성 향상을 위한 폐 산화동 분말 입도 제어 연구)

  • Hansung Lee;Minsu Kim;Byungmin Ahn
    • Journal of Powder Materials
    • /
    • v.30 no.4
    • /
    • pp.332-338
    • /
    • 2023
  • Thermite welding is an exceptional process that does not require additional energy supplies, resulting in welded joints that exhibit mechanical properties and conductivity equivalent to those of the parent materials. The global adoption of thermite welding is growing across various industries. However, in Korea, limited research is being conducted on the core technology of thermite welding. Currently, domestic production of thermite powder in Korea involves recycling copper oxide (CuO). Unfortunately, controlling the particle size of waste CuO poses challenges, leading to the unwanted formation of pores and cracks during thermite welding. In this study, we investigate the influence of powder particle size on thermite welding in the production of Cu-thermite powder using waste CuO. We conduct the ball milling process for 0.5-24 h using recycled CuO. The evolution of the powder shape and size is analyzed using particle size analysis and scanning electron microscopy (SEM). Furthermore, we examine the thermal reaction characteristics through differential scanning calorimetry. Additionally, the microstructures of the welded samples are observed using optical microscopy and SEM to evaluate the impact of powder particle size on weldability. Lastly, hardness measurements are performed to assess the strengths of the welded materials.

Determination of Combustion Propagation Velocity of Thermite Reaction Mixture Using Continuous VOD Measurement System (연속적 폭굉속도 측정 시스템을 이용한 테르밋 반응 혼합물의 연소전파속도 측정에 관한 연구)

  • Kim, Min-Seong;Kang, Hyeong-Min;Jeong, Sang-Sun;Jeong, Yun-Yeong;Park, Hoon;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.33 no.3
    • /
    • pp.21-28
    • /
    • 2015
  • The objective of this study is to develop a method for monitoring continuously the combustion propagation behavior of commercial thermite reaction mixtures using conventional continuous VOD (velocity of detonation) system. In order to monitor the combustion front propagation with elapsed time during thermite reaction, the VOD system employs two types of commercial VOD probes and one self-made probe: VOD PROBEROD-OS, VOD PROBEROD-HS and VOD PROBEROD-ES, respectively. Among the probes, the only self made VOD PROBEROD-ES successfully demonstrates the velocity of combustion propagation (VOC) with elapsed time. It was found that VOC of the thermite reaction mixture inside a steel tube has been reached around 200m/s within 100mm distance from the ignition and dramatically increased up to about twice the speed of sound in the range between 100mm and 300mm distance. Finally the VOC reached up to around 800m/s. This results imply that it is necessary to use over 300mm long cartridge of thermite reaction mixture in order to achieve normal VOC of the mixture.

Wear Mechanism of MgO-C Refractory with Thermite Reaction Products of MgO and Al (MgO와 Al의 테르밋 반응생성물이 첨가된 MgO-C계 내화재료의 용손 기구)

  • 최태현;전병세
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.7
    • /
    • pp.832-838
    • /
    • 1996
  • Thermite reaction products of MgO and Al were added to MgO-C refractory to improve the properties of corrosion against the attack of slag, oxidation and mechanical spalling. Corrosion rate of MgO-C-MgAl2O4 spinel refractory at the ratio of 3.3(CaO/SiO2) slag was smaller than that of MgO-C and MgO-C-Al refractory. The excellent corrosion resistance of the MgO-C-MgAl2O4 spinel refractory against the slag attack was appeared by Al and MgAl2O4 spinel with high melting point and corrosion resistance and the high thermal conductivity and low thermal expansion of AIN. Hot M.O.R at 140$0^{\circ}C$ and the resistance of oxidation weight loss at 90$0^{\circ}C$ were 210kg/cm2 and -12% respectively.

  • PDF

A Study on Making of High-Purity Ferro-manganese from $Mn_3O_4$ Waste Dust ($Mn_3O_4$ 분진으로부터 고순도 훼로망간 제조에 관한 연구)

  • Kim, Youn-Che;Song, Young-Jun;Park, Young-Koo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.135-139
    • /
    • 2011
  • In order to make high-purity ferro-manganese from $Mn_3O_4$ waste dust, the application of aluminothermite process to the reduction of the waste dust was investigated. The mixture from $Mn_3O_4$ dust as metallic source and Al metal powder as the reductant ignited, and reduced with an extremely intense exothermic reaction. The rapid propagation of the aluminothermite reaction occurred spontaneously and stably by ignition of the mixture. The Manganese having some alloy elements emerged as liquids due to the high temperatures reached up to about $2,500^{\circ}C$ and separated from the liquid by their differences of specific gravity. The result of thermite reaction showed the fact that can be obtained high purity ferro-manganese which have over about 90% of manganese content and lower impurities such as C, P, S than those of KS D3712 specification. The recovery of manganese from $Mn_3O_4$ dust was lower level of about 65% than about 75% from manganese ore by electric furnace process, that is due to spatter loss because of its extremely intense thermite reaction. But it will be improved by the process designed to provide CaO as the cooler or to use the Al metal powder having larger particle size distribution.

Synthesis and Thermal Characteristics of Nano-Aluminum/Fluorinated Polyurethane Binders (나노 알루미늄/불소 함유 폴리우레탄 결합제의 합성 및 열적 특성 연구)

  • Lan, Qianqian;Kim, Jin Seuk;Kwon, Younghwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.5
    • /
    • pp.40-50
    • /
    • 2016
  • Energetic plasticizers containing explosophore groups such as $-NO_2$, $-ONO_2$, and $-N_3$ group are susceptible to impact, shock, heat, etc, finally deteriorating the insensitivity of PBXs. In this study, in an attempt to investigate the feasibility of replacing sensitive explosophore groups to fundamentally inactive but potentially (latent) energetic fluorine group which was known to have an exothermic thermite reaction with aluminum, nano-aluminum/fluorinated polyurethane binders were prepared by simultaneous polyurethane and catalyst-free azide-alkyne click reaction in the presence of nano-aluminum. Thermal characteristics of nano-aluminum/fluorinated polyurethane binders were monitored by using DSC with high pressure crucible pan.

Preparation of $Al_2O_3-SiC$ Composite Powder by SHS Method (SHS법에 의한 $Al_2O_3-SiC$ 복합분말의 합성)

  • 이형민;이홍림;이형직
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.1
    • /
    • pp.11-16
    • /
    • 1995
  • High reaction heat evolved from the oxidation of Al was used to synthesize SiC, which might be difficult to be formed by SHS. Al2O3-SiC composite powder was easily manufactured using KNO3 as an ignition and reaction catalyst. Unreacted Si and C were observed after reaction dependent upon the composition of starting powders, reaction atmosphere and relative densities of compacted bodies. The unreacted carbon could be removed by calcining at $600^{\circ}C$ and the remaining Si could be removed by dissolving in NaOH solution. The final powder particles were smaller than 1${\mu}{\textrm}{m}$ in size.

  • PDF

Fabrication and Characterization of Highly Reactive Al/CuO Nano-composite using Graphene Oxide (산화그래핀을 적용한 고반응성 Al/CuO 나노복합재 제조 및 분석)

  • Lim, YeSeul
    • Journal of Powder Materials
    • /
    • v.26 no.3
    • /
    • pp.220-224
    • /
    • 2019
  • The aluminum (Al)/copper oxide (CuO) complex is known as the most promising material for thermite reactions, releasing a high heat and pressure through ignition or thermal heating. To improve the reaction rate and wettability for handling safety, nanosized primary particles are applied on Al/CuO composite for energetic materials in explosives or propellants. Herein, graphene oxide (GO) is adopted for the Al/CuO composites as the functional supporting materials, preventing a phase-separation between solvent and composites, leading to a significantly enhanced reactivity. The characterizations of Al/CuO decorated on GO(Al/CuO/GO) are performed through scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy mapping analysis. Moreover, the functional bridging between Al/CuO and GO is suggested by identifying the chemical bonding with GO in X-ray photoelectron spectroscopy analysis. The reactivity of Al/CuO/GO composites is evaluated by comparing the maximum pressure and rate of the pressure increase of Al/CuO and Al/CuO/GO. The composites with a specific concentration of GO (10 wt%) demonstrate a well-dispersed mixture in hexane solution without phase separation.