DOI QR코드

DOI QR Code

Thermite Reaction Between CuO Nanowires and Al for the Crystallization of a-Si

  • Kim, Do-Kyung (School of Electrical and Electronic Engineering, Yonsei University, Korea and System LSI Samsung Electronics Co. Ltd.) ;
  • Bae, Jung-Hyeon (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Kim, Hyun-Jae (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Kang, Myung-Koo (Samsung Mobile Display)
  • Received : 2010.08.09
  • Accepted : 2010.09.17
  • Published : 2010.10.31

Abstract

Nanoenergetic materials were synthesized and the thermite reaction between the CuO nanowires and the deposited nano-Al by Joule heating was studied. CuO nanowires were grown by thermal annealing on a glass substrate. To produce nanoenergetic materials, nano-Al was deposited on the top surface of CuO nanowires. The temperature of the first exothermic reaction peak occurred at approximately $600^{\circ}C$. The released heat energy calculated from the first exothermic reaction peak in differential scanning calorimetry, was approximately 1,178 J/g. The combustion of the nanoenergetic materials resulted in a bright flash of light with an adiabatic frame temperature potentially greater than $2,000^{\circ}C$. This thermite reaction might be utilized to achieve a highly reliable selective area crystallization of amorphous silicon films.

Keywords

References

  1. K. B. Plantier, M. L. Pantoya, and A. E. Gash, Combust. Flame 140, 299 (2005) [DOI: 10.1016/j.combustflame.2004.10.009].
  2. A. Prakash, A. V. McCormick, and M. R. Zachariah, Chem. Mater. 16, 1466 (2004) [DOI: 10.1021/cm034740t].
  3. J. Noro, A. S. Ramos, and M. T. Vieira, Intermetallics 16, 1061 (2008) [DOI: 10.1016/j.intermet.2008.06.002].
  4. J. Wang, E. Besnoin, A. Duckham, S. J. Spey, M. E. Reiss, O. M. Knio, and T. P. Weihs, J. Appl. Phys. 95, 248 (2004) [DOI: 10.1063/1.1629390].
  5. F. Mikulec, J. Kirtland, and M. Sailor, Adv. Mater. 14, 38 (2002) [DOI: 10.1002/1521-4095(20020104)14:1<38::aidadma38>3.0.co;2-z].
  6. M. Hossain, S. Subramanian, S. Bhattacharya, Y. Gao, S. Apperson, R. Shende, S. Guha, M. Arif, M. Bai, K. Gangopadhyay, and S. Gangopadhyay, J. Appl. Phys. 101, 054509 (2007) [DOI: 10.1063/1.2450672].
  7. X. Jiang, T. Herricks, and Y. Xia, Nano Lett. 2, 1333 (2002) [DOI: 10.1021/nl0257519].
  8. S. H. Fischer and M. C. Grubelich, 32nd AIAA/ASME/SAE/ASEE Joint Conference and Exhibit (Lake Buena Vista, FL 1996 Jul. 1-3) SAND95-2448C.
  9. J. H. Bae, D. K. Kim, T. H. Jeong, and H. J. Kim, Thin Solid Films 518, 6205 (2010) [DOI: 10.1016/j.tsf.2010.03.175].

Cited by

  1. CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications vol.60, 2014, https://doi.org/10.1016/j.pmatsci.2013.09.003
  2. Spark plasma sintering of Cu–Al–Ni shape memory alloy vol.577, 2013, https://doi.org/10.1016/j.jallcom.2012.02.145