• Title/Summary/Keyword: Thermally stable polymers

Search Result 38, Processing Time 0.024 seconds

Structure-Property Relationship of Polynorbornene derivative

  • Shin, Boo-Gyo;Shin, Jin-Bok;Mulpuri Syamkumar V.;Yoon, Do, Y.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.349-349
    • /
    • 2006
  • Vinyl-polynorbornene has good thermal stability, high transparency and low dielectric constant. However, it has low solubility, poor mechanical and adhesive properties. In this work, polynorbornene derivatives were prepared by Pd(II) late transition metal catalyst. The polymers have good solubility, and are thermally stable up to$300^{\circ}C$ The glass transition temperature is decreased as the side-chain becomes bulkier. Structure-property relationship of polynorbornene derivatives measured by X-ray scattering, mechanical and electrical properties will be discussed.

  • PDF

Preparation and Characterization of Hybrid Membrane for Block Copolymer Containing Diphenyl Unit Increasing Cationic Conductivity for Fuel Cells (연료전지용 양이온 전도성이 증가된 디페닐 단위를 갖는 블록공중합체 혼성막 제조 및 특성)

  • KIM, AE RHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.5
    • /
    • pp.465-470
    • /
    • 2017
  • Sulfonated fluorinated block copolymers having diphenyl units were mixed with the sulfonated cationic conductive polymers at an optimum mixing ratio to form hybrid membranes for fuel cells and their characteristics were studied. 2D and 3D AFM topology analysis confirmed that the number of hydrophilic units in the hybrid membrane was improved. Through the FE-SEM, the microstructure of the hybrid membrane implied hydrogen bonding and pi-pi interactions, and EDAX confirmed carbon, oxygen, sulfur, and fluorine. The thermogravimetric analysis showed that the hybrid membrane was thermally stable and the hydrophilicity of the hybrid membrane was increased by the contact angle of water droplets. As a result, it was confirmed that the cation conductivity increased by a factor of 1.8 times as the number of acidic domains in the hybrid film increased.

Using Microwave Irradiation to Prepare New Poly(amide-imide)s Containing Tetrahydropyrimidinone, Tetrahydro-2-thioxopyrimidine, and Trimellitic Rings in Their Main Chains: Synthesis and Characterization

  • Faghihi Khalil;Hagibeygi Mohsen
    • Macromolecular Research
    • /
    • v.13 no.1
    • /
    • pp.14-18
    • /
    • 2005
  • Under irradiation in a microwave oven, six novel poly(amide-imide)s containing tetrahydropyrimidinone, tetrahydro-2-thioxopyrimidine moieties and trimellitic rings in their main chains were synthesized through the polycondensation reaction of N,N'-(4,4'-diphenylether)bis(trimellitimide) diacid chloride with six different derivatives of tetrahydropyrimidinone and tetrahydro-2-thioxopyrimidine in the presence of a small amount of a polar organic medium, such as o-cresol. The polycondensation proceeded rapidly and completed within 7-9 min, producing a series of new poly(amide-imide)s in high yield that showed inherent viscosities in the range 0.33-0.52 dL/g. These poly(amide-imide)s were characterized by elemental analysis, viscosity measurement, thermal gravimetric analysis, solubility test, and FT-IR spectroscopy. All of the polymers were soluble at room temperature in polar solvents such as N,N-dimethylacetamide, N,N-dimethylformamide, dimethylsulfoxide, tetrahydrofuran, and N-methyl-2-pyrrolidone.

Chemical change of urushiol during heating process of Toxicodendron vernicifluum resin (Urushiol의 화학적 변화를 통한 건칠(乾漆)의 포제법(炮製法) 고찰)

  • Kim, Jung-Hoon;Doh, Eui jeong;Lee, Guemsan
    • The Korea Journal of Herbology
    • /
    • v.35 no.2
    • /
    • pp.1-6
    • /
    • 2020
  • Objectives : Heating process is the traditional processing method that has been applied to reduce the toxicity of dried resin of Toxicodendron vernicifluum (Anacardiacea) used as Geon-chil (乾漆, Lacca Rhois Exsiccata or Toxicodendri Resina). Urushiol, which is found in the plants of Toxicodendron genus, is a toxic compound that is absorbed into the skin and induces allergic dermatitis by being contacted. Hence, the reduction of urushiol level by heating processing of Geon-chil is crucial method for its medicinal application. Methods : Due to lack of Geon-chil processing-related articles, the articles researching the processing of lacquer (漆), as a coating material, were collected and analyzed to investigate the chemical change of urushiol during heating process. Results : The results demonstrate that the resin which was collected from the sap of T. vernicifluum tree was dried under warm and humid conditions repeatedly. During primary drying process, the laccase, a copper-containing enzyme in the resin, participated in the formation of urushiol polymers and thereafter urushiol-related toxicity could be reduced by making a lacquer harder and more stable. Moreover, heating a lacquer over 200℃ could cause thermo-degradation of urushiol polymers, and vaporized thermally degraded urushiol monomers and their by-products, which were determined using pyrolysis/GC-MS. Conclusions : These results support that heating process being performed over 200 ℃, such as stir-frying (炒) or calcination (煅), reduces the urushiol content in Geon-chil and hence, its medicinal use can be more stable without urushiol-related allergic reactions.

Synthesis and Photoelectronic Properties of Thermally Stable Poly[oxy(2,7-fluoren-9-onenylene)oxy(diorganosilylene)]s

  • Jung, Eun-Ae;Park, Young-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.2031-2036
    • /
    • 2012
  • Melt copolymerization reactions of several bis(diethylamino)silane derivatives, bis(diethylamino)methylphenylsilane, bis(diethylamino)methyloctylsilane, 1,2-bis(diethylamino)tetramethyldisilane, and 1,3-bis(diethylamino) tetramethyldisiloxane, with 2,7-dihydroxyfluoren-9-one were carried out to yield poly[oxy(2,7-fluoren- 9-onenylene)oxy(diorganosilylene)]s bearing the fluoren-9-one fluorescent aromatic group in the polymer main chain: poly[oxy(2,7-fluoren-9-onenylene)oxy(methylphenylsilylene)], poly[oxy(2,7-fluoren-9-onenylene) oxy(methyloctylsilylene)], poly[oxy(2,7-fluoren-9-onenylene)oxy(tetramethyldisilylene)], and poly[oxy- (2,7-fluoren-9-onenylene)oxy(tetramethyldisiloxanylene)]. These polymeric materials are soluble in common organic solvents such as $CHCl_3$ and THF. FTIR spectra of all the materials reveal characteristic Si-O-C stretching frequencies at 1012-1018 $cm^{-1}$. In the THF solution, the prepared materials show strong maximum absorption peaks at 258-270 nm, strong maximum excitation peaks at 260-280 nm, and strong maximum fluorescence emission bands at 310-420 nm. TGA thermograms suggest that most of the polymers are essentially stable to $200^{\circ}C$ without any weight loss and up to $300^{\circ}C$ with only a weight loss of less than 5% in nitrogen.

Synthesis and Design of Electroactive Polymers for Improving Efficiency and Thermal Stability in Organic Photovoltaics

  • Kim, Beom-Jun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.11.2-11.2
    • /
    • 2011
  • Polymer based organic photovoltaics have attracted a great deal of attention due to the potential cost-effectiveness of light-weight and flexible solar cells. However, most BHJ polymer solar cells are not thermally stable as subsequent exposure to heat drives further development of the morphology towards a state of macrophase separation in the micrometer scale. Here we would like to show three different approaches for developing new electroactive polymers to improve the thermal stability of the BHJ solar cells, which is a critical problem for the commercialization of these solar cells. For one of the examples, we report a new series of functionalized polythiophene (PT-x) copolymers for use in solution processed organic photovoltaics (OPVs). PT-x copolymers were synthesized from two different monomers, where the ratio of the monomers was carefully controlled to achieve a UV photo-crosslinkable layer while leaving the ${\pi}-{\pi}$ stacking feature of conjugated polymers unchanged. The crosslinking stabilizes PT-x/PCBM blend morphology preventing the macro phase separation between two components, which lead to OPVs with remarkably enhanced thermal stability. The drastic improvement in thermal stabilities is further characterized by microscopy as well as grazing incidence X-ray scattering (GIXS). In the second part of talk, we will discuss the use of block copolymers as active materials for WOLEDs in which phosphorescent emitter isolation can be achieved. We have exploited the use of triarylamine (TPA) oxadiazole (OXA) diblock copolymers (TPA-b-OXA), which have been used as host materials due to their high triplet energy and charge-transport properties enabling a balance of holes and electrons. Organization of phosphorescent domains in TPA-b-OXA block copolymers is demonstrated to yield dual emission for white electroluminescence. Our approach minimizes energy transfer between two colored species by site isolation through morphology control, allowing higher loading concentration of red emitters with improved device performance. Furthermore, by varying the molecular weight of TPA-b-OXA and the ratio of blue to red emitters, we have investigated the effect of domain spacing on the electroluminescence spectrum and device performance.

  • PDF

Synthesis and Membrane Preparation of Polyimides for Non-aqueous System (비수계용 폴리이미드 합성 및 분리막 제조)

  • 전종영;탁태문
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.39-45
    • /
    • 1997
  • Introduction : Polyimides are one of the most important classes of the high performance polymers due to their excellent electrical, thermal, and high-temperature mechanical properties. But their uses are limited because of their poor solubility. Most polyimide derivatives are processed in the form of polyamic acids, which are subsequently converted into the imide structures.Recently, it has been found that the soluble polyimides with large molecular weight sufficient to application. For enhancing processability, the majority of approaches have involved the following factors. As much as, the separation of the imide ring along the back-bone, that is to say, reducing the density of imide ring in the repeat structure. The introduction of bulky substituents along the back-bone, in order to enhance the free volume of main-chain. The incorporation of flexible or thermally stable linkages in the main-chain, reducing the packing force. The disruption of symmetry or recurrence regularity through copolymerization in order to reduce crystallnity.The objectives of this investigation are the synthesis and characterization of soluble polyimides as membrane materials by the single-step polymerization and the preparation of the asymmetric polyimide membrane by using phase inversion technique. In the present study, three series of polyimide derivatives are synthesized; H series is homopolyimides, A series is prepared from single dianhydride and two diamines, B series is yielded from two dianhydrides and a diamine. The dope solution was directly prepared from the PI solution via one step polymerization from monomers.

  • PDF

3,6-Carbazole Incorporated into Polymer Effects on Solar Cells

  • Lee, Gang-Young;Cha, Hyojung;Park, Chan Eon;Park, Taiho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.481.2-481.2
    • /
    • 2014
  • Bulk hetero junction (BHJ) polymer solar cell (PSCs) is one of the most promising fields as alternative energy source. Especially, the development of new p-type conjugated polymer is one of the main issues to get core technology. In this study, we investigated the chemical doping effects of incorporating 3,6-carbazole units into conjugated polymers based on 2,7-carbazole. We assessed the structural effects of this chemical doping by measuring the photovoltaic device performance of the copolymers with and without annealing. Note that the use of nanostructures in the bulk heterojunction layer could be a major obstacle to commercialization because nano-morphologies are frequently unstable at high temperatures. Therefore, the development of thermally stable polymer:fullerene blends with optimized PCEs is an important goal in this area of research. We studied the morphologies of the copolymers incorporating 3,6-carbazole units resulting from thermal annealing to investigate the effects of the difference between the T g values of the 2,7-carbazole unit and the 3,6-carbazole unit.

  • PDF

Poly(ethylene terephthalate) Nanocomposite Fibers with Thermally Stable Organoclays (내열성 유기화 점토를 이용한 폴리(에틸렌 테레프탈레이트) 나노복합체 섬유)

  • Jung, Min-Hye;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.31 no.6
    • /
    • pp.518-525
    • /
    • 2007
  • The thermomechanical properties and morphologies of nanocomposite fibers of poly(ethylene terephthalate)(PET) incorporating thermally stable organoclays are compared. Dodecyltriphenyl-phosphonium-mica($C_{12}PPh-Mica$) and 1-hexadecane benzimidazole-mica ($C_{16}BIMD-Mica$) were used as reinforcing fillers in the fabrication of PET hybrid fibers. Dispersions of organoclays with PET were studied by using the in-situ polymerization method at various organoclay contents to produce nano-scale composites. The thermo-mechanical properties and morphologies of the PET hybrid fibers were determined using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), wide angle X-ray diffraction (XRD), electron microscopy (SEM and TEM), and a universal tensile machine (UTM). Transmission electron microscopy (TEM) micrographs show that some of the clay layers are dispersed homogeneously within the polymer matrix on the nano-scale, although some clay particles are agglomerated. We also found that the addition of only a small amount of organoclay is enough to improve the thermal stabilities and mechanical properties of the PET nanocomposite fibers. Even polymers with low organoclay content (<5 wt%) were found to exhibit much higher thermo-mechanical values than pure PET fibers.

Effects of Types of Catalysts and Solvents on the Water Repellency of Coating Films Prepared from MTMS and TMES (MTMS와 TMES로부터 제조된 코팅 도막의 발수성에 미치는 촉매와 용매 종류의 영향)

  • Kim, Dong Gu;Lee, Byung Wha;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.749-757
    • /
    • 2019
  • Methyltrimethoxysilane (MTMS) and trimethylethoxysilane (TMES) as starting materials were dissolved in various types of solvents, and hydrolysis with water and polycondensation reaction were carried out using various types of catalysts to prepare non-fluorinated water-repellent coating solutions. The coating solutions were spin-coated on cold-rolled steel sheets, and thermally cured to prepare water-repellent coating films. The effect of types of catalysts and solvents on the water repellency of the resulting coating films was investigated during this process. When hydrochloric acid and nitric acid, which are strong acids, were used as catalysts, the solutions showed a white opaque state due to the aggregation of siloxane polymers. On the other hand, when acetic acid, phosphoric acid, and oxalic acid, which are weak acids, were used, they were in a stable and transparent state without precipitation. As a result, the contact angles of the coated films, prepared from hydrochloric acid and nitric acid, were $58^{\circ}$ and $92^{\circ}$, respectively, showing low water repellency. On the other hand, when acetic acid, phosphoric acid, and oxalic acid were used, the contact angles of the coated films were $101^{\circ}$, $103^{\circ}$ and $116^{\circ}$, respectively, showing high water repellency. In addition, when isopropanol and ethanol were used as solvents, phase separation occurred in the solutions due to the aggregation of siloxane polymers. On the other hand, when methanol, ethyl acetate, and methyl ethyl ketone were used as solvents, the solutions were transparent and showed a stable state without sedimentation.