• 제목/요약/키워드: ThermalImpedance

검색결과 171건 처리시간 0.033초

Improvement on the Laminated Busbar of NPC Three-Level Inverters based on a Supersymmetric Mirror Circulation 3D Cubical Thermal Model

  • He, Feng-You;Xu, Shi-Zhou;Geng, Cheng-Fei
    • Journal of Power Electronics
    • /
    • 제16권6호
    • /
    • pp.2085-2098
    • /
    • 2016
  • Laminated busbars with a low stray inductance are widely used in NPC three-level inverters, even though some of them have poor performances in heat equilibrium and overvoltage suppression. Therefore, a theoretical method is in need to establish an accurate mathematical model of laminated busbars and to calculate the impedance and stray inductance of each commutation loop to improve the heat equilibrium and overvoltage suppression performance. Firstly, an equivalent circuit of a NPC three-level inverter laminated busbar was built with an analysis of the commutation processes. Secondly, on the basis of a 3D (three dimensional) cubical thermal model and mirror circulation theory, a supersymmetric mirror circulation 3D cubical thermal model was built. Based on this, the laminated busbar was decomposed in 3D space to calculate the equivalent resistance and stray inductance in each commutation loop. Finally, the model and analysis results were put into a busbar design, simulation and experiments, whose results demonstrate the accuracy and feasibility of the proposed method.

Structural and Thermal Analysis and Membrane Characteristics of Phosphoric Acid-doped Polybenzimidazole/Strontium Titanate Composite Membranes for HT-PEMFC Applications

  • Selvakumar, Kanakaraj;Kim, Ae Rhan;Prabhu, Manimuthu Ramesh;Yoo, Dong Jin
    • Composites Research
    • /
    • 제34권6호
    • /
    • pp.373-379
    • /
    • 2021
  • A series of novel PBI/SrTiO3 nanocomposite membranes composed of polybenzimidazole (PBI) and strontium titanate (SrTiO3) with a perovskite structure were fabricated with various concentrations of SrTiO3 through a solution casting method. Various characterization techniques such as proton nuclear magnetic resonance, thermogravimetric analysis, atomic force microscopy (AFM) and AC impedance spectroscopy were used to investigate the chemical structure, thermal, phosphate absorption and morphological properties, and proton conductivity of the fabricated nanocomposite membranes. The optimized PBI/SrTiO3-8 polymer nanocomposite membrane containing 8wt% of SrTiO3 showed a higher proton conductivity of 7.95 × 10-2 S/cm at 160℃ compared to other nanocomposite membranes. The PBI/SrTiO3-8 composite membrane also showed higher thermal stability compared to pristine PBI. In addition, the roughness change of the polymer composite membrane was also investigated by AFM. Based on these results, nanocomposite membranes based on perovskite structures are expected to be considered as potential candidates for high-temperature PEM fuel cell applications.

출력 스위치의 열화를 고려한 주파수 가변 구동 방식의 전자식 안정기 설계 (Design of Electronic Ballasts applied with Variable Frequency Driving Technique with regard for Thermal Degradation of Output Switches)

  • 오성근;최명호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.157-161
    • /
    • 2000
  • The electronic ballasts for low pressure discharge lamps are produced and commercialized. However, the electronic ballasts for high pressure lamps are now in progress because of poor reliability and high cost. The major case of troubles with electronic ballasts are thermal destruction of semiconductor output switches due to non ideal i-v characteristics of switch. The loss converts to heat and rises the temperature of switch and it increases proportionally to switching frequency and value of current and voltage. This study shows the variable frequency ballasts which can suppress the heating of switches efficiently. It is used for the limitation the switch current and the rising temperature of switch by impedance variation of lamp inductor. As a result, initial warm-up time of the proposed ballasts was faster than that of magnetic ballasts about 90 msec. Power factor of tested ballasts follow as ; input and output average of magnetic ballasts are 93 [%] and 86 [%], respectively, And proposed ballasts are 97 [%] and 99 [%], respectively.

  • PDF

단열 코팅재료의 비파괴 평가기법 (Non-Destructive Evaluation for Material of Thermal Barrier Coatings)

  • 이철구;김태형
    • 한국공작기계학회논문집
    • /
    • 제14권1호
    • /
    • pp.44-51
    • /
    • 2005
  • Material degradation is a multibillion-dollar problem which affects all the industries amongst others. The last decades have seen the development of newer and more effective techniques such as Focused-ion beam(FIB), Transmission electron microscopy(TEM), Secondary-ion mass spectroscopy(SIMS), auger electron spectroscopy(AES), X-ray Photoelectron spectroscopy(XPS) , Electrochemical impedance spectroscopy(EIS), Photo- stimulated luminescence spectroscopy(PSLS), etc. to study various forms of material degradation. These techniques are now used routinely to obtain information on the chemical state, depth profiling, composition, stress state, etc. to understand the degradation behavior. This paper describes the use of these techniques specifically applied to materials degradation and failure analysis.

CMOS 공정과 호환되는 마이크로머시닝 기술을 이용한 마이크로파 전력센서 (A CMOS Compatible Micromachined Microwave Power Sensor)

  • 이대성;이경일;황학인;이원호;전형우;김왕섭
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(1)
    • /
    • pp.439-442
    • /
    • 2002
  • We present in this Paper a microwave Power sensor fabricated by a standard CMOS process and a bulk micromachining process. The sensor consists of a CPW transmission line, a resistor as a healer, and thermocouple arrays. An input microwave heater, the resistor so that the temperature rises proportionally to the microwave power and tile thermocouple arrays convert it to an electrical signal. The sensor uses air bridged 8round of CPW realized by wire bonding to reduce tile device size and cost and to improve the thermal impedance. Al/poly-Si junctions are used for the thermocouples. Poly-Si is used for tile resister and Aluminium is for transmission line. The resistor and hot junctions of the thermocouples are placed on a low stress silicon nitride diaphragm to minimize a thermal loss. The fabricated device operates properly from 1㎼ to 100㎽\ulcorner of input power. The sensitivity was measured to be ,3.2~4.7 V/W.

  • PDF

DTS 기반 온도 감시 및 온도 조건에서의 배터리 셀 열화 특성 분석 (DTS-based Temperature Monitoring and Analysis of Battery Cell Deterioration Characteristics by Temperature Condition)

  • 권순종;김수연;황진;우상균;김봉석
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제8권2호
    • /
    • pp.143-149
    • /
    • 2022
  • As ESS safety issues increase recently, there is a need to more precisely monitor the temperature of the ESS. In this paper, DTS technology for temperature monitoring of ESS batteries is introduced and the temperature measurement principle is explained. The temperature of the battery module is measured using the DTS system, and the thermal deviation between battery cells inside the battery module is analyzed. In order to analyze how thermal imbalance affects the charging and discharging performance of the battery, an accelerated degradation test was conducted. Cycle life characteristics analysis, battery surface temperature change, and AC impedance characteristics were conducted to analyze how the performance of battery cells differs according to temperature conditions.

강재 표면에 아크 금속 용사된 Al 및 Al-5 % Mg 코팅의 방지 성능 (The Corrosion Protection Performance of Al and Al-5%Mg Coatings Deposited on Steel Surface by Arc Thermal Metal Spray)

  • 잔낫;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 봄 학술논문 발표대회
    • /
    • pp.140-141
    • /
    • 2021
  • Arc thermal spray process is widely used to protect the steel from corrosion and abrasion. In the present study, two different coatings i.e. Al and Al-5%Mg were used to compare their corrosion resistance performance and the effect of 5% Mg addition in the properties of deposited coating. The SEM results showed the more compact and less porous morphology of Al-5%Mg coating compared to Al. The corrosion resistance performance of both deposited coatings was studied in artificial ocean water with exposure periods and results are compared. The total impedance values of Al-5%Mg at 0.01 Hz exhibited highest with exposure periods might be attributed to the coating and corrosion products nature and morphology compared to Al coating.

  • PDF

리튬 이차전지의 흑연 음극에 형성된 표면피막의 열적 안정성 (Thermal Stability of Surface Film Formed on a Graphite Negative Electrode in Lithium Secondary Batteries)

  • 정순기;이하나;김양수
    • 전기화학회지
    • /
    • 제14권3호
    • /
    • pp.157-162
    • /
    • 2011
  • 투과형 전자 현미경과 전기화학 임피던스 분광법을 이용하여 리튬 이차전지의 흑연 음극에 생성되는 표면피막의 고온 안정성을 고찰하였다. 투과형 전자 현미경을 이용한 분석에 의해 $60^{\circ}C$에서 저장되는 동안 표면피막의 일부가 전해질 용액 중에 용해되는 것이 확인되었으며, 이 과정에서 피막의 두께 감소 및 피막의 형상이 다공성 구조로 변하였다. 한편, 이 과정에서 피막의 조성 변화에 기인하는 것으로 추측되는 표면피막의 저항 증가가 전기화학 임피던스 분광법에 의하여 확인되었다. 표면피막의 고온 안정성은 vinylene carbonate, 1,3-propane sultone, etylene sulfite와 같은 첨가제에 의해 제한적으로 개선되었다.

표면처리된 실리콘 카바이드 섬유 복합막의 고분자 전해질 막 연료전지 성능 (Performance of Modified-Silicon Carbide Fiber Composites Membrane for Polymer Exchange Membrane Fuel Cells)

  • 박정호;김태언;전소미;조용일;조광연;설용건
    • 한국수소및신에너지학회논문집
    • /
    • 제25권1호
    • /
    • pp.28-38
    • /
    • 2014
  • The organic-inorganic composite membrane in polymer exchange membrane fuel cells (PEMFCs) have several fascinating technological advantages such as a proton conductivity, thermal stability and mechanical properties. As the inorganic filler, silicon carbide (SiC) fiber have been used in various fields due to its unique properties such as thermal stability, conductivity, and tensile strength. In this study, composite membrane was successfully fabricated by modified-silicon carbide fiber. Modified process, as a novel process in SiC, takes reaction by phosphoric acid after oxidation process (generated homogeniusly $SiO_2$ layer on SiC fiber). The mechanical property which was conducted by tensile test of the 5wt% modified-$SiO_2@SiCf$ composite membrane was better than that of Aquivion casting membrane as well as ion cxchange capacity(IEC) and proton conductivity. In addition, the single cell performance was observed that the 5wt% modified-$SiO_2@SiCf$ composite membrane was approximately $0.2A/cm^2$ higher than that of a Aquivion casting electrolyte membrane and electrochemical impedance was improved with the charge transfer resistance and membrane resistance.

고체산화물 연료전지의 Samarium Oxide 혼합 공기극에 대한 열특성 분석 (Thermal Characteristics of Samarium-based Composite Cathode ($Sm_{0.5}Sr_{0.5}CoO_{3-\delta}/ Sm_{0.2}Ce_{0.8}O_{1.9}$) for Intermediate Temperature-operating Solid Oxide Fuel Cell)

  • 백승욱;배중면
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2021-2025
    • /
    • 2007
  • Performance of single cell at solid oxide fuel cell (SOFC) system is largely affected by electrocatalytic and thermal properties of cathode. Samarium-based perovskite oxide material is recently recognized as promising cathode material for intermediate temperature-operating SOFC due to its high electrocatalytic property. Perovskite structured $Sm_{0.5}Sr_{0.5}CoO_{3-\delta}$ and its composite material, $Sm_{0.5}Sr_{0.5}CoO_{3-\delta}/Sm_{0.2}Ce_{0.8}O_{1.9}$ were investigated in terms of area specific resistance (ASR), thermal expansion coefficient (TEC), thermal cycling and long term performance. $Sm_{0.2}Ce_{0.8}O_{1.9}$ was used as electrolyte material. Electrochemical ac impedance spectroscopy (EIS) and dilatometer were used to measure the cathodic properties. Composite cathode ($Sm_{0.5}Sr_{0.5}CoO_{3-\delta}$: $Sm_{0.2}Ce_{0.8}O_{1.9}$ = 6:4) showed a good ASR of 0.13${\Omega}$ $cm^2$ at 650$^{\circ}C$ and its TEC value was 12.3${\times}$10-6/K at 600$^{\circ}C$ which is similar to the value of ceria-based electrolyte of 11.9${\times}$10-6/K. Performance of composite cathode was maintained with no degradation even after 13 times thermal cycle test.

  • PDF