• Title/Summary/Keyword: Thermal-structure Stability

Search Result 650, Processing Time 0.025 seconds

Improvement of Thermal Stability of Optical Current Sensors Based on Polymeric Optical Integrated Circuits for Quadrature Phase Interferometry (사분파장 위상 간섭계 폴리머 광집적회로 기반 광전류센서의 온도 안정성 향상 연구)

  • Chun, Kwon-Wook;Kim, Sung-Moon;Park, Tae-Hyun;Lee, Eun-Su;Oh, Min-Cheol
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.6
    • /
    • pp.249-254
    • /
    • 2019
  • An optical current sensor device that measures electric current by the principle of the Faraday effect was designed and fabricated. The polarization-rotated reflection interferometer and the quadrature phase interferometer were introduced so as to improve the operational stability. Complex structures containing diverse optical components were integrated in a polymeric optical integrated circuit and manufactured in a small size. This structure allows sensing operation without extra bias feedback control, and reduces the phase change due to environmental temperature changes and vibration. However, the Verdet constant, which determines the Faraday effect, still exhibits an inherent temperature dependence. In this work, we tried to eliminate the residual temperature dependence of the optical current sensor based on polarization-rotated reflection interferometry. By varying the length of the fiber-optic wave plate, which is one of the optical components of the interferometer, we could compensate for the temperature dependence of the Verdet constant. The proposed optical current sensor exhibited measurement errors maintained within 0.2% over a temperature range, from 25℃ to 85℃.

A Study on Electrical Properties of $Ta_2O_{5-x}$ Thin-films Obtained by $O_2$ RTA ($O_2$RTA 방법으로 제조된 $Ta_2O_{5-x}$ 박막의 전기적 특성)

  • Kim, In-Seong;Song, Jae-Seong;Yun, Mun-Su;Park, Jeong-Hu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.8
    • /
    • pp.340-346
    • /
    • 2002
  • Capacitor material utilized in the downsizing passive devices and integration of passive devices requires the physical and electrical properties at given area such as capacitor thickness reduction, relative dielectric constant increase, low leakage current and thermal stability. common capacitor materials, $Al_2O_3$, $SiO_2$, $Si_3N_4$, $SiO_2$/$Si_3N_4$, TaN and et al., used until recently have reached their physical limits in their application to integration of passive devices. $Ta_2O_{5}$ is known to be a good alternative to the existing materials for the capacitor application because of its high dielectric constant (25~35), low leakage current and high breakdown strength. Despite the numerous investigations of $Ta_2O_{5}$ material, there have little been established the clear understanding of the annealing effect on capacitance characteristic and conduction mechanism. This study presents the dielectric properties $Ta_2O_{5}$ MIM capacitor structure Processed by $O_2$ RTA oxidation. X-ray diffraction patterns showed the existence of amorphous phase in $600^{\circ}C$ annealing under the $O_2$ RTA and the formation of preferentially oriented-$Ta_2O_{5}$ in 650, $700^{\circ}C$ annealing and the AES depth profile showed $O_2$ RTA oxidation effect gives rise to the $O_2$ deficientd into the new layer. The leakage current density respectively, at 3~1l$\times$$10_{-2}$(kV/cm) were $10_{-3}$~$10_{-6}$(A/$\textrm{cm}^2$). In addition, behavior is stable irrespective of applied electric field. the frequency vs capacitance characteristic enhanced stability more then $Ta_2O_{5}$ thin films obtained by $O_2$ reactive sputtering. The capacitance vs voltage measurement that, Vfb(flat-band voltage) was increase dependance on the $O_2$ RTA oxidation temperature.

Preparation and Characterization of Chitosan-coated PLGA Nanoparticle (키토산이 코팅된 PLGA 나노입자의 제조 및 특성)

  • Yu, Su-Gyeong;Nah, Jae-Woon;Jeong, Gyeong-Won
    • Applied Chemistry for Engineering
    • /
    • v.32 no.5
    • /
    • pp.509-515
    • /
    • 2021
  • In this study, poly lactic-co-glycolic acid (PLGA) nanoparticles (PNP) were prepared through double (w/o/w) emlusion and emulsifying solvent-evaporation technique using PLGA, which has biocompatibility and biodegradability. To maximize stability and bioavailability of the particles, chitosan-coated PLGA nanoparticles (CPNP) were prepared by charge interaction between PNP and chitosan. We demonstrated that CPNP can be utilized as a drug carrier of oral administration. The chemical structure of CPNP was analyzed by 1H-NMR and FT-IR, and all characteristic peaks appeared, confirming that it was successfully prepared. In addition, particle size and zeta potential of CPNP were analyzed using dynamic light scattering (DLS) while morphological images were obtained using transmission electron microscope (TEM). Thermal decomposition behavior of CPNP was observed through thermogravimetric analysis (TGA). In addition, the cytotoxicity of CPNP was confirmed by MTT assay at HEK293 and L929 cell lines, and it was proved that there is no toxicity confirmed by the cell viability of above 70% at all concentrations. These results suggest that the CPNP developed in this study may be used as an oral drug delivery carrier.

Growth of Hexagonal Boron Nitride Thin Films on Silicon Using a Single Source Precursors

  • Boo, Jin-Hyo;Lee, Soon-Bo;Casten Rohr;Wilson Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.120-120
    • /
    • 1998
  • Boron nitride (BN) films have attracted a growing interest for a variety of t technological applications due to their excellent characteristics, namely hardness, c chemical inertness, and dielectrical behavior, etc. There are two crystalline phases 1551; of BN that are analogous to phases of carbon. Hexagonal boron nitride (h-BN) has a a layered s$\sigma$ucture which is spz-bonded structure similar to that of graphite, and is t the stable ordered phase at ambient conditions. Cubic boron nitride (c-BN) has a z zinc blende structure with sp3-bonding like as diamond, 따ld is the metastable phase a at ambient conditions. Among of their prototypes, especially 삼Ie c-BN is an i interesting material because it has almost the same hardness and thermal c conductivity as di없nond. C Conventionally, significant progress has been made in the experimental t techniques for synthesizing BN films using various of the physical vapor deposition 밍ld chemical vapor deposition. But, the major disadvantage of c-BN films is that t they are much more difficult to synthesize than h-BN films due to its narrow s stability phase region, high compression stress, and problem of nitrogen source c control. Recent studies of the metalorganic chemical vapor deposition (MOCVD) of I III - V compound have established that a molecular level understanding of the d deposition process is mandatory in controlling the selectivity parameters. This led t to the concept of using a single source organometallic precursor, having the c constituent elements in stoichiometric ratio, for MOCVD growth of 삼Ie required b binary compound. I In this study, therefore, we have been carried out the growth of h-BN thin f films on silicon substrates using a single source precursors. Polycrystalline h-BN t thin films were deposited on silicon in the temperature range of $\alpha$)() - 900 $^{\circ}$C from t the organometallic precursors of Boron-Triethylamine complex, (CZHs)3N:BRJ, and T Tris(dimethylamino)Borane, [CH3}zNhB, by supersonic molecular jet and remote p plasma assisted MOCVD. Hydrogen was used as carrier gas, and additional nitrogen w was supplied by either aDlIDonia through a nozzle, or nitrogen via a remote plasma. T The as-grown films were characterized by Fourier transform infrared spectroscopy, x x-ray pthotoelectron spectroscopy, Auger electron spectroscopy, x-ray diffraction, t transmission electron diffraction, optical transmission, and atomic force microscopy.roscopy.

  • PDF

First Principle Studies on Magnetism and Electronic Structure of Perovskite Structured CoFeX3 (X = O, F, S, Cl) (페로브스카이트 구조를 가지는 CoFeX3(X = O, F, S, Cl) 합금의 자성과 전자구조에 대한 제일원리계산)

  • Jekal, Soyoung;Hong, Soon Cheol
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.6
    • /
    • pp.179-184
    • /
    • 2016
  • For an industrial spin-transfer torque (STT) MRAM, low switching current and high thermal stability are required, simultaneously. For this point of view, it is essential to find magnetic materials which satisfy high spin polarization and strong perpendicular magnetocrystalline anisotropy (MCA). In this paper, we investigate electronic structures and MCA energies of perovskite $CoFeX_3$ (X = O, F, S, Cl). For X = F and Cl, spin polarization at the Fermi level are 97 % and 96 %, respectively, which are close to a half metal. Furthermore, Co-terminated 5-monolayer (ML) $CoFeX_3$ (X = O, F, S, Cl) films show perpendicular MCA. In particular, the MCA energy of the Co-terminated $CoFeCl_3$ is about 1.0 meV/cell which is three times larger than that of a 5-ML CoFe film. Therefore, we expect to realize a magnetic material with high spin polarization and strong perpendicular MCA energy by utilizing group 6 and 7 elements in the periodic table, and to contribute to commercializing of the STT-MRAM.

Effect of Bi and Zr addition on yellow colour properties of environment-friendly ceria-based pigments (비스무스와 지르코늄 첨가를 통한 세리아계 친환경 노란색 안료 특성에 관한 연구)

  • Kim, Tae-Ho;Hwang, Hae-Jin;Kim, Jin-Ho;Hwang, Kwang-Taek;Han, Kyu-Sung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.4
    • /
    • pp.153-159
    • /
    • 2015
  • Inorganic pigments have been received a great attention for various applications including paint, glazed ceramic ink, art tile, and building exterior due to their excellent thermal and chemical stability. Traditionally, the compositions of $PbCrO_4$, CdS and CdSe have been widely used as a yellow inorganic pigment. However, the use of these compositions has been restricted in recent years, because they contain harmful elements such as Cd, Cr, Pb and Se. In this study, new environment-friendly ceria-based pigment was synthesized using solid state reaction. Crystal structure and morphology of the obtained $Ce_{1-x}Zr_xBi_yO_{2-y/2}$ yellow pigment were analyzed using XRD and SEM, respectively. Substitutional effect of Zr and Bi on the pigment color was analyzed using UV-vis. spectrophotometer and CIE $L^*a^*b^*$ analysis. The crystal structure of the obtained pigments was dependent on the calcination temperature. The color characteristics and absorption band of the pigments were dependent on the calcination temperature and Zr, Bi contents. As a result, all the obtained yellow pigments showed the effective absorption ranged from ultraviolet to visible light, and $Ce_{0.44}Zr_{0.36}Bi_{0.20}O_{0.19}$ (x = 0.36, y = 0.20) pigment showed the most brilliant yellow color.

Synthesis of (Co,Mg)Al2O4 and (Ni,Mg)Al2O4 Blue Ceramic Nano Pigment by Polymerized Complex Method (착체중합법을 이용한 (Co,Mg)Al2O4 및 (Ni,Mg)Al2O4 청색 나노 무기안료 합성)

  • Son, Bo-Ram;Yoon, Dea-Ho;Kim, Jin-Ho;Han, Kyu-Sung;Cho, Woo-Suk;Hwang, Kwang-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.510-517
    • /
    • 2013
  • In this study, the properties of blue inorganic nano-pigments with a spinel structure were systematically investigated. We report the preparation of a blue ceramic nano-pigment and the Co and Ni substitutional effects on the blue color. $MgAl_2O_4$ was selected as the crystalline host network for the synthesis of cobalt and nickel-based blue ceramic nano-pigments. Various compositions of $Co_xMg_{1-x}Al_2O_4$ and $Ni_xMg_{1-x}Al_2O_4$ ($0{\leq}x{\leq}1$) powders were prepared using apolymerized complex method. The obtained powder was preheated at $400^{\circ}C$ for 5 h and then calcined at $1000^{\circ}C$ for 5 h. XRD patterns of the (Co,Mg)$Al_2O_4$ and (Ni,Mg)$Al_2O_4$ samples showed a single phase of the spinel structure in all compositions. TEM results indicated nano-sized pigments for (Co,Mg)$Al_2O_4$ and (Ni,Mg)$Al_2O_4$ with a particle size ranging from 20 to 50 nm. The characteristics of the color tones of (Co,Mg)$Al_2O_4$ and (Ni,Mg)$Al_2O_4$ were analyzed by CIE $L^*a^*b^*$ measurements. In addition, the thermal stability and the binding characteristics of (Co,Mg)$Al_2O_4$, (Ni,Mg)$Al_2O_4$ are discussed in terms of the TG-DSC and FT-IR results, respectively.

Improvement of Structure and Electrochemical Properties of LiNi0.5Mn1.5O4 for High Voltage Class Cathode Material by Cr Substitution (Cr 치환을 이용한 고전압용 양극 활물질 LiNi0.5Mn1.5O4의 구조와 전기화학적 성능의 개선)

  • Eom, Won-Sob;Kim, Yool-Koo;Cho, Won-Il;Jang, Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.2
    • /
    • pp.82-87
    • /
    • 2005
  • The cathode material, $LiNi_{0.5}Mn_{1.5}O_4$, for high voltage applications of Li-ion batteries exhibits impurity phases due to oxygen deficiency during the high temperature heat treatment. The impurity phase reduces the electrochemical properties of the electrode since the deficiency spinel structure disturbs the lithium ion intercalation and deintercalation. In this study, Cr-substituted $LiNi_{0.5-x}Mn_{1.5}Cr_xO_4(0{\leq}x{\leq}0.05)$ powders are synthesized by a sol-gel method in order to reduce the amount of the impurity phases in the $LiNi_{0.5-x}Mn_{1.5}Cr_xO_4$. Thermal analysis of the cathode material shows that the $LiNi_{0.5}Mn_{1.5}O_4$ without Cr substitution looses $2\%$ of its weight due to oxygen deficiency but the amount of weight loss is diminished when Cr is substituted. XRD analysis also supports the reduction of the impurity phases in the cathode after chromium substitution, suggesting that the improvement of the electrochemical properties such as the capacity retention and electrochemical stability are attributed to the low content of impurity phases in the Cr-substituted $LiNi_{0.5-x}Mn_{1.5}Cr_xO_4.$

Synthesis and Characterization of Zeolite Using Water Treatment Sludge (정수슬러지를 이용한 제올라이트의 합성 및 특성연구)

  • Ko, Hyun Jin;Ko, Yong Sig
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.263-269
    • /
    • 2020
  • Zeolite was synthesized hydrothermally using the water-treatment sludge, and the effects of various synthesis parameters like reaction temperature, reaction time, and Na2O/SiO2 molar ratio on the crystallization of zeolite were investigated. Crystal structure, physical property, and thermal stability of zeolite crystals were characterized by X-ray powder diffraction, FTIR spectroscopy, BET nitrogen adsorption, and TGA measurements. The removal efficiencies of nitrogen in ammonia, heavy metal ions, and TOC were calculated to evaluate zeolite's adsorption capacity. The primary chemical composition of water-treatment sludge was 28.79% Al2O3 and 27.06% SiO2. The zeolites were synthesized by merely employing the water-treatment sludge as silica and alumina sources without additional chemicals. Zeolite crystals synthesized through the water-treatment sludge were confirmed as an A-type zeolite structure. Zeolite A had the highest crystallinity obtained from a gel with the molar composition 2.1Na2O-Al2O3-1.6SiO2-65H2O after 5 h at a temperature of 90 ℃. The specific surface area of zeolite obtained was 55 ㎡ g-1, which was higher than commercial zeolite A. The removal efficiency of nitrogen in ammonia was 68% after 3 h of reaction time, while the removal efficiencies of Pb2+ and Cd2+ ions were 99.1% and 99.3%, respectively. These results indicate active ion exchange between Pb2+ or Cd2+ ion and Na+ ion in the zeolite framework. The adsorption experiments on the different zeolite addition conditions were performed for 3 h with 300 ppm humic acid. Based on the results, TOC's highest efficiency was 83% when 5 g of zeolite was added.

A review on the design requirement of temperature in high-level nuclear waste disposal system: based on bentonite buffer (고준위폐기물처분시스템 설계 제한온도 설정에 관한 기술현황 분석: 벤토나이트 완충재를 중심으로)

  • Kim, Jin-Seop;Cho, Won-Jin;Park, Seunghun;Kim, Geon-Young;Baik, Min-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.587-609
    • /
    • 2019
  • Short-and long-term stabilities of bentonite, favored material as buffer in geological repositories for high-level waste were reviewed in this paper in addition to alternative design concepts of buffer to mitigate the thermal load from decay heat of SF (Spent Fuel) and further increase the disposal efficiency. It is generally reported that the irreversible changes in structure, hydraulic behavior, and swelling capacity are produced due to temperature increase and vapor flow between $150{\sim}250^{\circ}C$. Provided that the maximum temperature of bentonite is less than $150^{\circ}C$, however, the effects of temperature on the material, structural, and mineralogical stability seems to be minor. The maximum temperature in disposal system will constrain and determine the amount of waste to be disposed per unit area and be regarded as an important design parameter influencing the availability of disposal site. Thus, it is necessary to identify the effects of high temperature on the performance of buffer and allow for the thermal constraint greater than $100^{\circ}C$. In addition, the development of high-performance EBS (Engineered Barrier System) such as composite bentonite buffer mixed with graphite or silica and multi-layered buffer (i.e., highly thermal-conductive layer or insulating layer) should be taken into account to enhance the disposal efficiency in parallel with the development of multilayer repository. This will contribute to increase of reliability and securing the acceptance of the people with regard to a high-level waste disposal.