• Title/Summary/Keyword: Thermal-structure Stability

Search Result 650, Processing Time 0.024 seconds

Reliability Assesment Test on the Regular Maintenance of HTS Cable System (초전도케이블시스템 유지.보수에 따른 신뢰성 평가 시험)

  • Sohn, Song-Ho;Yang, Hyung-Suk;Lim, Ji-Hyun;Choi, Ha-Ok;Kim, Dong-Lak;Ryoo, Hee-Suk;Hwang, Si-Dole
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.361-361
    • /
    • 2009
  • KEPCO High Temperature Superconducting (HTS) cable system rated with $3\Phi$, 22.9kV, 1250A was laid in 2006, and the long term test is in progress. The HTS cable system with the cooling system has been operated below cryogenic temperature. That environment exposes the system to the thermo-mechanical stress due to the significant temperature difference, and the cooling system has moving parts for the forced circulation of the coolant. Therefore the HTS cable system experiences thermal fatigue and moving part such as liquid nitrogen pump need a regular replacement every 5000 hours Building the assessment criterion, the maintenance procedure was established and regular preventive maintenance was done; improvement of the termination structure and the replacement of the bearing of liquid nitrogen pump. Following the proper process, the reliability assessment test including He leakage detection and the stability of flow rate was performed. This paper describes the process and result of the first regular maintenance of KEPCO HTS cable system

  • PDF

The Synthesis and Electrochemical Performance of Microspherical Porous LiFePO4/C with High Tap Density

  • Cho, Min-Young;Park, Sun-Min;Kim, Kwang-Bum;Lee, Jae-Won;Roh, Kwang Chul
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.135-142
    • /
    • 2012
  • Over the past few years, $LiFePO_4$ has been actively studied as a cathode material for lithium-ion batteries because of its advantageous properties such as high theoretical capacity, good cycle life, and high thermal stability. However, it does not have a very good power capability owing to the low lithium-ion diffusivity and poor electronic conductivity. Reduction in particle size of $LiFePO_4$ to the scale of nanometers has been found to dramatically enhance the above properties, according to many earlier reports. However, because of the intrinsically low tap density of nanomaterials, it is difficult to commercialize this method. Many studies are being carried out to improve the volumetric energy density of this material and many methods have been reported so far. This paper provides a brief summary of the synthesis methods and electrochemical performances of micro-spherical $LiFePO_4$ having high volumetric energy density.

Synthesis and Characterization of Mono-sulfonated Poly(ether sulfone) for a Fuel Cell Application (고분자 전해질 연료전지용 Sulfonated Poly(ether sulfone)의 합성 및 특성 평가)

  • Krishnan N.N.;Kim H.-J.;Prasanna M.;Cho E.-A.;Oh I.-H.;Hong S.-A.;Lim T.-H.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.235-238
    • /
    • 2005
  • Sulfonated poly(ether sulfone) copolymers (PESs) were synthesized using hydroquinone 2-potassium sulfonate (HPS) with other monomers (bisphenol A and 4-fluorophenyl sulfone). PESs with different $mole\%$ of hydrophilic group were prepared by changing the mole ratio of HPS in the polymerization reaction. The chemical structure and the thermal stability of these polymers were characterized by using $^1H-NMR$, FT-IR and TGA techniques. The PES 60 membrane, which has $60 mole\%$ of HPS unit in the polymer backbone, has a proton conductivity of 0.091 S/cm and good insolubility in boiling water. The TGA showed that PES 60 was stable up to $272^{\circ}C$ with a char yield of about $29\%\;at\;900^{\circ}C\;under\;N_2$ atmosphere. To investigate the single cell performance, the catalyst coated PES 60 membrane was used and a single cell test was carried out using $H_2/O_2$ gases as fuel and oxidant at various temperatures. We observed that the cell performance was enhanced by increasing the cell temperature. A current density of $1400 mA/cm^2$ at 0.60 V was obtained at $70^{\circ}C$.

  • PDF

Synthesis and Characterization of a New PPV Derivative Containing a Sterically Hindered 2,5-Dimethylphenyl Group

  • Kim, Yun-Hi;Lee, Hyun-Ouk;Lee, Ki-Suk;Kwon, Soon-Ki
    • Macromolecular Research
    • /
    • v.11 no.6
    • /
    • pp.471-475
    • /
    • 2003
  • A new poly[2-(2',5'-dimethylphenyl)-1,4-phenylenevinylene] (PDMPPV) that features a bulky 2',5'-dimethylphenyl substituent, which can induce steric hindrance between the PPV backbone and the methyl groups, was designed and synthesized. The polymer structure having no TBB defects was confirmed by $^1$H-NMR and $\^$13/CNMR spectroscopy. The polymer showed good thermal stability with high T$\_$g/. The polymer film showed a maximum absorption at 415 nm with an absorption onset at 480 nm. The maximum emission peak showed at ca. 515 nm, with a shoulder at 530 nm. The turn-on voltages of ITO/PEDOT/PDMPPV/Al and ITO/PDMPPV/Al devices were 8 and 10 V, respectively. The electroluminescence spectrum from the device showed a maximum peak at 510 nm with a shoulder at ca. 535 nm.

Phase Change of Precipitates and Age Hardening in Rapidly Solidified Mg-Zn-Ca Base Alloys

  • Park Won-Wook;You Bong-Sun
    • Journal of Powder Materials
    • /
    • v.12 no.4 s.51
    • /
    • pp.303-308
    • /
    • 2005
  • Various kinds of Mg-Zn-Ca base alloys were rapidly quenched via melt spinning process. The meltspun ternary and quaternary alloy ribbons were heat-treated, and then the effects of additional elements on age hardening behavior and phase change of precipitates were investigated using Vickers hardness tester, XRD, and TEM equipped with EDS system. In ternary alloys, age hardening was mostly due to the distribution of $Mg_6Ca_2Zn_3$ and $Mg_2Ca$. The stable phases of precipitates were varied according to the aging temperature and the alloy composition. With the increase of Ca content, $Mg_2Ca$ precipitates were detected more than $Mg_6Ca_2Zn_3$ precipitates. In quaternary alloys, the precipitates taken from Mg-Zn-Ca-Co were identified as new quaternary phase, whereas those taken from Mg-Zn-Ca-Zr as MgZnCa containing Zr. In general, the ternary alloy showed higher peak hardness and thermal stability than the quaternary considering the total amounts of the solutes. It implies that the structure of precipitate should be controlled to have the coherent interface with the Mg matrix.

Analisys on Freezing Characteristics of Pavement Layer Using the Feild Pavement Model test (현장 모형 도로 축소 실험을 이용한 포장구성층의 동결 특성 분석)

  • Shin, Eun-Chul;Ryu, Byung-Hyun;Moon, Yong-Soo;Park, Jeong-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1164-1171
    • /
    • 2010
  • Korea is considered to be a seasonal frozen soil area that is thawed in the spring, and most of the area is frozen in winter as to the characteristic of geography. In the current design codes for anti-freezing layer, the thickness of anti freezing layer is calculated by freezing depth against the temperature condition. Therefore, they have a tendency of over-design and uniform thickness without the considerations of thermal stability, bearing capacity and frost susceptibility of materials. So, it is essential for studying the appropriateness and bearing capacity besides the seasonal and mechanical properties of pavement materials to take a appropriate and reasonable design of the road structure. In this research, the evaluation of frost susceptibility on subgrade, ant-freezing layer, sub base was conducted by means of the mechanical property test and laboratory field road model downed scale experiment. The temperature, heaving amount, heaving pressure and unfrozen water contents of soil samples, the subgrade, anti-freezing layer, sub base soils of highway construction site, were measured to determine the frost susceptibility.

  • PDF

Hydrogen Adsorption of PAN-based Porous Carbon Nanofibers using MgO as the Substrate

  • Jung, Min-Jung;Im, Ji-Sun;Jeong, Eui-Gyung;Jin, Hang-Kyo;Lee, Young-Seak
    • Carbon letters
    • /
    • v.10 no.3
    • /
    • pp.217-220
    • /
    • 2009
  • In this study, porous electrospun carbon fibers were prepared by electrospinning with PAN and $MgCl_2$, as a MgO precursor. MgO was selected as a substrate because of its chemical and thermal stability, no reaction with carbon, and ease of removal after carbonization by dissolving out in acidic solutions. $MgCl_2$ was mixed with polyacrylonitrile (PAN) solution as a precursor of MgO with various weight ratios of $MgCl_2$/PAN. The average diameter of porous electrospun carbon fibers increased from 1.3 to 3 ${\mu}m$, as the $MgCl_2$ to PAN weight ratio increased. During the stabilization step, $MgCl_2$ was hydrolyzed to MgOHCl by heat treatment. At elevated temperature of 823 K for carbonization step, MgOHCl was decomposed to MgO. Specific surface area and pore structure of prepared electrospun carbon fibers were decided by weight ratio of $MgCl_2$/PAN. The amount of hydrogen storage increased with increase of specific surface area and micropore volume of prepared electrospun carbon fibers.

Evaluation on the Properties of the Current Limiting Part for Fault-Current-Limiting Type HTS Cables (사고전류 제한형 고온 초전도케이블의 한류부 특성평가)

  • Kim, Tae-Min;Hong, Gong-Hyun;Han, Byung-Sung;Du, Ho-Ik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.3
    • /
    • pp.191-195
    • /
    • 2015
  • Inside the existing superconducting cables, the superconducting wire carries a loss-free current, and the cable former (the stranded copper wire) bypasses the fault current to prevent damage and loss of the superconducting cable when the fault current is applied. The fault-current-limiting-type superconducting cable proposed in this paper usually carries a steady current; but in a fault state, the cable generates self-resistance that makes the fault current lower than a certain width. That is, the superconducting cable that transmitted only a low voltage and a large capacity power repetitively limits the fault current, as does a superconducting current limiter. To complete this structure, it is essential to investigate the mutual resistance relationship between the superconducting wires after applying a fault current. Therefore, in this paper, one kinds of superconducting wires (a wire without a stabilization layer) were connected parallel 4 tapes, respectively; and after applying a fault current, the current, voltage, resistance and thermal stability of the HTS thin-film wires were examined.

Effect of Oxygen Enriched Air on the Combustion Characteristics in a Coaxial Non-Premixed Jet (II) - Flame Structure and Temperature Distribution - (산소부화공기가 동축 비예혼합 제트의 연소특성에 미치는 영향 (II) - 화염의 구조와 온도분포 -)

  • Kwark, Ji-Hyun;Jeon, Chung-Hwan;Jang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.223-229
    • /
    • 2004
  • Combustion using oxygen enriched air is known as a technology which can increase thermal efficiency due to increase of the flame temperature. Flame shapes, schlieren photos, OH radical chemiluminescence and local flame temperature were examined as a function of OEC(Oxygen Enriched Concentration) in a coaxial non-premixed jet. With increase of OEC, flame length and width decreased, but its brightness increased significantly, and the size of vortices in the flame also increased. Especially, the reaction around the flame surface became active. The strong OH intensity appeared to be made and moved from middle stream to upper one with increase of OEC, which shows combustion reaction in the upper stream becomes more dominant In addition, the temperature distributions of the flames showed similar tendency with OH radical intensities. A flame with high temperature and strong stability was obtained with increasing OEC of the coflow.

Efficient Blue Light Emitting Diode by Using Anthracene Derivative with 3,5-Diphenylphenyl Wings at 9- and 10-Position

  • Kim, Yun-Hi;Lee, Sung-Joong;Jung, Sang-Yun;Byeon, Ki-Nam;Kim, Jeong-Sik;Shin, Sung-Chul;Kwon, Soon-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.3
    • /
    • pp.443-446
    • /
    • 2007
  • The novel blue light emitting material, 9,10-bis(3',5'-diphenylphenyl)anthracene (BDA) was synthesized by Suzuki coupling reaction and characterized by the measurements of 1H NMR, 13C NMR and FT-IR. The new anthracene derivative, which contains anthracene as a main core unit and 3',5'-diphenylphenyl group derivative as wings, has high fluorescence yield, good thermal stability, and high glass transition temperature at 188 oC. With the newly non-doped blue emitting material in the multilayer device structure, it was possible to achieve the current efficiency of 3.0 cd/A. The EL spectrum of the ITO/CuPc/α-NPD/BDA/Alq3/LiF/Al device showed a maximum wavelength (λmax) at 440 nm. The emitting color of device showed the blue emission (x,y) = (0.18,0.19) at 10 mA/cm2 in CIE (Commission Internationale de l'Eclairage) chromaticity coordinates.