Synthesis and Characterization of a New PPV Derivative Containing a Sterically Hindered 2,5-Dimethylphenyl Group

  • Kim, Yun-Hi (Department of Polymer Science & Engineering and Engineering Research Institute, Gyeongsang National University) ;
  • Lee, Hyun-Ouk (Department of Polymer Science & Engineering and Engineering Research Institute, Gyeongsang National University) ;
  • Lee, Ki-Suk (Department of Polymer Science & Engineering and Engineering Research Institute, Gyeongsang National University) ;
  • Kwon, Soon-Ki (Department of Polymer Science & Engineering and Engineering Research Institute, Gyeongsang National University)
  • Published : 2003.12.01

Abstract

A new poly[2-(2',5'-dimethylphenyl)-1,4-phenylenevinylene] (PDMPPV) that features a bulky 2',5'-dimethylphenyl substituent, which can induce steric hindrance between the PPV backbone and the methyl groups, was designed and synthesized. The polymer structure having no TBB defects was confirmed by $^1$H-NMR and $\^$13/CNMR spectroscopy. The polymer showed good thermal stability with high T$\_$g/. The polymer film showed a maximum absorption at 415 nm with an absorption onset at 480 nm. The maximum emission peak showed at ca. 515 nm, with a shoulder at 530 nm. The turn-on voltages of ITO/PEDOT/PDMPPV/Al and ITO/PDMPPV/Al devices were 8 and 10 V, respectively. The electroluminescence spectrum from the device showed a maximum peak at 510 nm with a shoulder at ca. 535 nm.

Keywords

References

  1. J. Chem. Soc. Chem. Commun. H.Shirakawa;E.J.Louis;A.C.MacDiamid;C.K.Chiang;A.J.Heerger
  2. Nature v.347 J.H.Burroughes;D.D.C.Bradley;A.R.Brown;R.N.Marks;K.MacKay;R.H.Friend;P.L.Burn;A.B.Holmes https://doi.org/10.1038/347539a0
  3. J. Polym. Sci. Part A-I v.4 H.G.Gilch;W.L.Wheelwight https://doi.org/10.1002/pol.1966.150040602
  4. Macromolecules v.33 D.M.Johansson;G.Srdanov;G.Yu;M.Theander;O.Inganas;M.R.Andersson https://doi.org/10.1021/ma991582b
  5. Macromolecules v.34 B.K.An;Y.H.Kim;D.C.Shin;S.Y.Park;H.S.Yu;S.K.Kwon https://doi.org/10.1021/ma0016735
  6. Macromol. Res. v.10 R.S.Ryu;S.H.Chang;S.K.Kwon;Y.H.Kim;D.H.Hwang https://doi.org/10.1007/BF03218287
  7. Macromol. Res. v.11 Y.H.Kim;H.O.Lee;S.O.Jung;S.K.Kwon https://doi.org/10.1007/BF03218353
  8. Macromolecules v.36 D.C.Shin;Y.H.Kim;H.You;S.K.Kwon https://doi.org/10.1021/ma021703z
  9. Macromolecules v.35 S.H.Lee;B.B.Jang;T.Tsutsui https://doi.org/10.1021/ma010643e
  10. J. Am. Chem. Soc. v.120 B.R.Hsieh;Y.Yu;E.W.Forsythe;G.M.Schaaf;W.A.Feld https://doi.org/10.1021/ja973553r
  11. J. Chem. Soc. Chem. Commun. D.H.Hwang;H.K.Shim;J.I.Lee
  12. Jpn. J. Appl. Phys. v.35 M.Yoshida;A.Fujii;Y.Ohmori;K.Yoshino https://doi.org/10.1143/JJAP.35.L397
  13. Nature v.397 R.H.Friend;R.W.Gymer;A.B.Holmes;J.H.Burroughes;R.N.Marks;C.Taliani;D.D.C.Bradley;D. A. Dos Santos;J.L.Bredas;M.Logdlund;W.R.Salaneck https://doi.org/10.1038/16393
  14. Chem. Phys. Lett. v.269 N.C.Greenham;I.D.W.Samuel;G.R.Hayes;R.T.Phillips;Y.Kessener;S.C.Moratti;A.B.Holmes;R.H.Friend
  15. Synth. Met. v.122 H.Becker;H.Spreitzer;W.Kreuder;E.Kluge;H.Schneck;K.Treacher https://doi.org/10.1016/S0379-6779(00)01364-3
  16. Macromolecules v.34 D.M.Johansson;M.Theander;G.Srdanov;G.Yu;O.Inganas;M.R.Andersson https://doi.org/10.1021/ma001921x
  17. Macromolecules v.35 D.M.Johansson;X.Wang;T.Johansson;O.Inganas;G.Yu;G.srdanov;M.R.Andreson https://doi.org/10.1021/ma011768m
  18. J. Mater. Chem. v.12 Y.H.Kim;D.C.Shin;S.K.Kwon;J.H.Lee https://doi.org/10.1039/b200496h
  19. Chem. Mater. v.9 Y.H.Kim;S.K.Kwon;D.S.You;M.F.Rubner;M.Wrighton https://doi.org/10.1021/cm970586x
  20. Macromol. Res. v.10 T.W.Lee;O.O.Park;J.Kim;Y.C.Kim https://doi.org/10.1007/BF03218318