• Title/Summary/Keyword: Thermal-structure Stability

Search Result 650, Processing Time 0.023 seconds

Gel Polymer Electrolytes Derived from a Polysilsesquioxane Crosslinker for Lithium-Sulfur Batteries (리튬-황 전지용 폴리실세스키옥산 고분자 가교제로 제조된 겔 고분자 전해질의 전기화학적 특성)

  • Kim, Eunji;Lee, Albert S.;Lee, Jin Hong
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.467-471
    • /
    • 2021
  • A ladder-like polysilsesquioxane (LPMA64) functionalized with a crosslinkable group was synthesized and used for the preparation of organic-inorganic hybrid gel polymer electrolytes through a thermal crosslinking process of the liquid electrolytes. A small weight percent of LPMA64 polymer crosslinker (5 wt%) was able to form a well-developed network structure, resulting in good dimensional stability with high ionic conductivity. The lithium-sulfur batteries fabricated with organic-inorganic hybrid gel polymer electrolytes exhibited stable C-rate and cycling performance with excellent Coulombic efficiency due to the alleviated lithium polysulfide shuttling effect during prolonged cycling. The result demonstrates that the organic-inorganic hybrid gel polymer electrolytes could be a promising candidate electrolyte for application in lithium-sulfur batteries.

A Study on the Activity of Metal Filter Pt Coated on Soot Oxidation (백금 코팅 메탈필터소재의 Soot 산화반응에 대한 활성 연구)

  • Kim, Sung Su;Lee, Sang Moon;Jang, Du Hun;Bae, Se Hyun;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.400-404
    • /
    • 2011
  • The activity and stability of the metal filter material Pt coated on NOx and soot oxidation were examined. The catalytic reaction test for NOx and soot were also performed independently and simultaneously. As a result, it showed the NO to $NO_2$ shift reaction with 20% conversion, NOx decomposition (about 10%) and perfect soot oxidation on the material Pt coated proceeded. Onset temperature of soot oxidation shift to lower temperature (about $30^{\circ}C$) by generated $NO_2$. The material also was less affected by thermal shock than $Pt/Al_2O_3$ or $Pt/TiO_3$ catalysts due to its stability of surface structure.

Alkaline induced-cation crosslinking biopolymer soil treatment and field implementation for slope surface protection

  • Minhyeong Lee;Ilhan Chang;Seok-Jun Kang;Dong-Hyuk Lee;Gye-Chun Cho
    • Geomechanics and Engineering
    • /
    • v.33 no.1
    • /
    • pp.29-40
    • /
    • 2023
  • Xanthan gum and starch compound biopolymer (XS), an environmentally friendly soil-binding material produced from natural resources, has been suggested as a slope protection material to enhance soil strength and erosion resistance. Insufficient wet strength and the consequent durability concerns remain, despite XS biopolymer-soil treatment showing high strength and erosion resistance in the dried state, even with a small dosage of soil mass. These concerns need to be solved to improve the field applicability and post-stability of this treatment. This study explored the utilization of an alkaline-based cation crosslinking method using calcium hydroxide and sodium hydroxide to induce non-thermal gelation, resulting in the enhancement of the wet strength and durability of biopolymer-treated soil. Laboratory experiments were conducted to assess the unconfined compressive strength and cyclic wetting-drying durability performance of the treated soil using a selected recipe based on a preliminary gel formation test. The results demonstrated that the uniformity of the gel structure and gelling time varied depending on the ratio of crosslinkers to biopolymer; consequently, the strength of the soil was affected. Subsequently, site soil treated with the recipe, which showed the best performance in indoor assessment, was implemented on the field slope at the bridge abutment via compaction and pressurized spraying methods to assess feasibility in field implementation. Moreover, the variation in surface soil hardness was monitored periodically for one year. Both slopes implemented by the two construction methods showed sufficient stability against detachment and scouring, with a higher soil hardness index than the natural slope for a year.

Synthesis of Cyclotriphosphazene Derivatives for Flame Retardants (Cyclotriphosphazene을 이용한 난연제의 합성)

  • Kim, Hae Young;Shin, Young Jae;Ji, Young Jon;Shin, Jae Sup
    • Applied Chemistry for Engineering
    • /
    • v.17 no.2
    • /
    • pp.144-149
    • /
    • 2006
  • Non-halogen flame retardants have been the focus of extensive research because of environmental problems. Hexakisp-henoxycyclotriphosphazene was synthesized in order to use as the flame retardant of ABS resin. And using bisphenol A, the polymers containing a cyclotriphosphazene structure were synthesized in order to also use as the flame retardant of ABS resin. All of the synthesized polymers themselves had the excellent flame retardancy. And as their molecular weight and crosslinking density were increased, the thermal stability was increased. But when the synthesized compounds were used as the flame retardant for ABS resin, the lower molecular weight compound in these compounds showed the better flame retardancy and the better physical properties of ABS resin.

A Study on Structures and Properties of Liquid Crystal-UV Curable Resin Composite Materials (액정-UV경화 이크릴레이트 수지 복합재료의 구조와 물성에 관한 연구)

  • 김종원
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.18 no.1
    • /
    • pp.59-69
    • /
    • 2000
  • The characteristics of liquid crystal polymer composite(LCPC) films are possessed of large-area and flexible display, polarizer free, high contrast, wide angle of visual filed and high responsiveness. It is well known that the LCPC films consisting of a continuous LC phase embeded in a three-dimentional network of polymer matrix are formed by photopolymerization-induced phase separation. In this study, we have investigated the point that both liquid crystals and polymer having different properties have to coexiste as composed films. The purpose of this study has been the development of new application with liquid crystals and UV-curable monomers. In the results abtained on the miscibility of nematic liquid crystal and UV-curable resins, difunctional monomer HX-620 turned out to shows the best. From the results abtained on structures, electro-optical properties and dynamic visocoelasticity for LCPC films, the best mixing ratio of monomer to LC mixture were 3/7(photoinitiator; 4wt%) by weight, and this ratio has been provided the most thermal stability for LCPC films. In the results abtained on structure and discoloration properties of LCPC films, it has been demonstrated that consiste of a 8:2 mixture of chiral nematic liquid crystal and HX-620 has the greatest domain and it was the best discoloration.

  • PDF

The development of PEMFC cathode using polyol method with directly grown CNT on carbon paper (Carbon paper에 직접적으로 생산한 CNT를 polyol 방법으로 Pt deposition하여 PEMFC cathode 개발)

  • Ok, Jinhee;Altalsukh, Dorjgotov;Rhee, Junki;Park, Sangsun;Shul, Yonggun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.84.1-84.1
    • /
    • 2010
  • Since the discovery of the carbon nanotube(CNTs), they have attracted much attention because of unique properties that may impact many fields of science and technology. The considerable properties of CNTs include high surface area, outstanding thermal, electrical conductivity and mechanical stability. However, uniform deposition of Pt nanoparticles on carbon surface remains inaccessible territory because of the inert carbon surface. In this study, we prepared directly oriented CNTs on carbon paper as a catalyst support in cathode electrode. carbon surface was functionalized using aryl diazonium salt for increasing adhesion of Ni particles which is precursor for growing CNTs. For fabricate electrode, CNTs on carbon paper were grown by chemical vapor deposition using Ni catalyst and Pt nanoparticles were deposited on CNTs oriented carbon paper by polyol method. The performance was measured using Proton electrolyte Membrane Fuel Cell(PEMFC). The structure and morphology of the Pt nanoparticles on CNTs were characterized by Scanning electron Microscopy(SEM) and Transmission electron Microscopy (TEM). The average diameter of Pt nanoparticles was 3nm.

  • PDF

One Pot Synthesis and Characterization of Alginate Stabilized Semiconductor Nanoparticles

  • Sundarrajan, Parani;Eswaran, Prabakaran;Marimuthu, Alexander;Subhadra, Lakshmi Baddireddi;Kannaiyan, Pandian
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3218-3224
    • /
    • 2012
  • Uniform and well dispersed metal sulfide semiconductor nanoparticles incorporated into matrices of alginate biopolymer are prepared by using a facile in situ method. The reaction was accomplished by impregnation of alginate with divalent metal ions followed by reaction with thioacetamide. XRD analysis showed that the nanoparticles incorporated in the polymer matrix were of cubic structure with the average particle diameter of 1.8 to 4.8 nm. Field emission scanning electron microscopy and high resolution transmission electron microscopy images indicated that the particles were well dispersed and distributed uniformly in the matrices of alginate polymer. FT-IR spectra confirmed the presence of alginate in the nanocomposite. The crystalline nature and thermal stability of the alginate polymer was found to be influenced by the nature of the divalent metal ions used for the synthesis. The proposed method is considered to be a simple and greener approach for large scale synthesis of uniform sized nanoparticles.

Synthesis, Spectral, Characterization, DFT and Biological Studies of New 3-[(3-Chlorophenyl)-hydrazono]-pentane-2,4-dione Metal Complexes

  • Sadeek, Sadeek A.;Zordok, Wael A.;El-Farargy, Ahmed F.;El-Desoky, Sameh I.
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.2
    • /
    • pp.169-178
    • /
    • 2014
  • A new series of metal complexes of V(IV), Pd(II), Pt(IV), Ce(IV) and U(VI) with 3-[(3-chlorophenyl)-hydrazono]-pentane-2,4-dione (Cphpd) were synthesized and characterized by elemental analysis, molar conductivity, magnetic moment measurements, UV-vis, FT-IR and $^1H$ NMR as well as TG-DTG techniques. The data indicated that the Cphpd acts as a bidentate ligand through the hydrazono nitrogen and one keto oxygen. The kinetic parameters have been evaluated by using Coats Redfern (CR) and Horowitz-Metzeger (HM) methods. The thermodynamic data reflected the thermal stability for all complexes. The calculated bond length and the bond stretching force constant, F(U=O), values for $UO_2$ bond are $0.775{\AA}$ and $286.95Nm^{-1}$. The bond lengths, bond angles, dipole moment and the lowest energy model structure of the complexes have been determined with DFT calculations. The antimicrobial activity of the synthesized ligand and its complexes were screened.

High Temperature Plastic Deformation Behaviors of the Bulk Metallic Glass Zr-Ti-Cu-Ni-Be Alloy (벌크 비정질 Zr-Ti-Cu-Ni-Be 합금의 고온 소성 변형 특성)

  • Lee K. S.;Ha T. K.;Ahn S. H.;Chang Y. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.272-276
    • /
    • 2001
  • Multicomponent $Zr_{41.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$ bulk matallic glass alloy shows good bulk glass forming ability due to its high resistance to crystallization in the undercooled liquid state.1) In this study, DSC and X-ray diffractometry have been performed to confirm the amorphous structure of the master $Zr_{41.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$ alloy. To investigate the mechanical properties and deformation behaviors of the bulk metallic $Zr_{41.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$ alloy, a series of compression tests has been carried out at the temperatures ranging from $351^{\circ}C$ to $461^{\circ}C$ and at the various initial strain rates from $2{\times}10^{-4}s^{-1}\;to\;2{\times}10^{-2}s^{-1}$. There are two types of nominal stress-strain curves. The one shows linear stress-strain relationship meaning fracture at maximum stress, the other shows plastic deformation including steady-state flow. Also DSC analysis for the compressed specimens has been performed to investigate the change of thermal stability and crystallization behavior for the various test conditions.

  • PDF

Fabrication of Porous Ceramic Materials for Biomedical and Environmental Applications

  • Lee, Byong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.18.2-18.2
    • /
    • 2009
  • Ceramics have some properties that are unmatched by other kind of materials like metals or polymers. The ability of high thermal and chemical resistance and in case of being superior in specific mechanical properties makes the ceramic materials suitable for arange of applications. The microstructure and morphology of a material arguably permit the use of many advanced application otherwise difficult to achieve.Porous structures have some important applications in biomedical and environmental field. For human hard tissue reconstruction and augmentation procedure suitable biomaterials are used with a desirable porosity. A range of porous bioceramics were fabricated with tailored design to meet the demand of specific applications. Channeled and interconnected porosity was introduced in alumina, zirconia, and hydroxyapatite or tri calcium phosphate ceramics by different methods like multi-pass extrusion process, bubble formation in viscous slurry,slurry dripping in immiscible liquid, sponge replica method etc. The detailed microstructural and morphological investigations were carried out to establish the unique features of each method and the developed systems. For environmental filters the porous structures were also very important. We investigated a range of channeled and randomly porous silicon based ceramic composites to enhance the material stability and filtration efficiency by taking advantage of the material chemistry of the element. Detailed microstructural and mechanical characterizations were carried out for the fabricated porous filtration systems.

  • PDF