DOI QR코드

DOI QR Code

A Study on the Activity of Metal Filter Pt Coated on Soot Oxidation

백금 코팅 메탈필터소재의 Soot 산화반응에 대한 활성 연구

  • Kim, Sung Su (Department of Environmental Energy Systems Engineering, Kyonggi University) ;
  • Lee, Sang Moon (Department of Environmental Energy Systems Engineering, Kyonggi University) ;
  • Jang, Du Hun (Department of Environmental Energy Systems Engineering, Kyonggi University) ;
  • Bae, Se Hyun (CES (Construction & Engineering Service Co., Ltd)) ;
  • Hong, Sung Chang (Department of Environmental Energy Systems Engineering, Kyonggi University)
  • 김성수 (경기대학교 환경에너지시스템공학과) ;
  • 이상문 (경기대학교 환경에너지시스템공학과) ;
  • 장두훈 (경기대학교 환경에너지시스템공학과) ;
  • 배세현 ;
  • 홍성창 (경기대학교 환경에너지시스템공학과)
  • Received : 2011.04.18
  • Accepted : 2011.07.10
  • Published : 2011.08.10

Abstract

The activity and stability of the metal filter material Pt coated on NOx and soot oxidation were examined. The catalytic reaction test for NOx and soot were also performed independently and simultaneously. As a result, it showed the NO to $NO_2$ shift reaction with 20% conversion, NOx decomposition (about 10%) and perfect soot oxidation on the material Pt coated proceeded. Onset temperature of soot oxidation shift to lower temperature (about $30^{\circ}C$) by generated $NO_2$. The material also was less affected by thermal shock than $Pt/Al_2O_3$ or $Pt/TiO_3$ catalysts due to its stability of surface structure.

백금이 코팅된 메탈 필터 소재의 NOx, soot 산화반응의 안정성 및 활성에 대하여 연구하였다. NOx와 soot 산화실험은 독립 또는 동시에 반응시킨 조건으로 수행되었다. 그 결과, 백금이 코팅된 소재는 20%의 NO의 $NO_2$로의 전환반응, 약 10%의 NOx 분해반응 그리고 soot의 완전산화반응이 진행됨을 보였다. Soot 산화반응은 $NO_2$의 생성으로 인하여 반응온도가 더 저온으로(약 $30^{\circ}C$) 이동할 수 있었다. 코팅 소재는 $Pt/Al_2O_3$ 또는 $Pt/TiO_2$ 촉매보다 표면구조의 안정성으로 인하여 열충격에 대한 내구성이 우수하였다.

Keywords

References

  1. S. S. Kim, H. J. Choi, and S. C. Hong, Appl. Chem. Eng., 20, 437 (2009).
  2. K. S. Kang, Prospectives of Industrial Chemistry, 8, 26 (2005).
  3. L. Castoldi, R. Matattese, L. Lietti, and P. Forzatti, Appl. Catal. B: Environ., 64, 25 (2006). https://doi.org/10.1016/j.apcatb.2005.10.015
  4. J. S. Yang, S. S. Hong, K. J. Oh, K. M. Cho, B. G. Ryu, and D. W. Park, Appl. Chem., 1, 648 (1997).
  5. R. J. Farrauto, K. E. Voss, and R. J. Heck, SAE 932720.
  6. R. Beckmann, W. Engeler, and E. Mueller, SAE 922330.
  7. J. S. Yang, S. S. Hong, K. J. Oh, K. M. Cho, B. G. Ryu, and D. W. Park, Appl. Chem., 1, 429 (1998).
  8. J. Oi-Uchisawa, S. Wang, T. Nanbaa, A. Ohi, and A. Obuchi, Appl. Catal. B: Environ., 44, 207 (2003). https://doi.org/10.1016/S0926-3373(03)00055-9
  9. B. A. A. L. van Setten, J. Bremmer, S. J. Jelles, M. Makke, and J. A. Moulijin, Catal. Today, 53, 613 (1999). https://doi.org/10.1016/S0920-5861(99)00149-2
  10. S. Biamino, P. Fino, D. Fino, N. Russo, and C. Badini, Appl. Catal. B: Environ., 61, 297 (2005). https://doi.org/10.1016/j.apcatb.2005.05.010
  11. A. Bueno-Lopez, K. Krishna, M. Makkee, and J. A. Moulijin, Catal. Lett., 99, 203 (2005). https://doi.org/10.1007/s10562-005-2120-x
  12. A. Bueno-Lopez, K. Krishna, M. Makkee, and J. A. Moulijin, J. Catal., 230, 237 (2005). https://doi.org/10.1016/j.jcat.2004.11.027
  13. S. S. Kim, K. H. Park, and S. C. Hong, Appl. Chem. Eng., 21, 178 (2010).