• Title/Summary/Keyword: Thermal-structural interactions

Search Result 20, Processing Time 0.03 seconds

Thermal Denaturation of the Apo-cyclic AMP Receptor Protein and Noncovalent Interactions between Its Domains

  • Won, Hyung-Sik;Seo, Min-Duk;Ko, Hyun-Suk;Choi, Wahn Soo;Lee, Bong-Jin
    • Molecules and Cells
    • /
    • v.26 no.1
    • /
    • pp.61-66
    • /
    • 2008
  • Cyclic AMP receptor protein (CRP) is allosterically activated by cAMP and functions as a global transcription regulator in enteric bacteria. Structural information on CRP in the absence of cAMP (apo-CRP) is essential to fully understand its allosteric behavior. In this study we demonstrated interdomain interactions in apo-CRP, using a comparative thermodynamic approach to the intact protein and its isolated domains, which were prepared either by limited proteolysis or using recombinant DNA. Thermal denaturation of the intact apo-CRP, monitored by differential scanning calorimetry, revealed an apparently single cooperative transition with a slight asymmetry. Combined with circular dichroism and fluorescence analysis, the thermal denaturation of apo-CRP could be interpreted as a coupled process involving two individual transitions, each attributable to a structural domain. When isolated individually, both of the domains exhibited significantly altered thermal behavior, thus pointing to the existence of non-covalent interdomain interactions in the intact apo-CRP. These observations suggest that the allosteric conformational change of CRP upon binding to cAMP is achieved by perturbing or modifying pre-existing interdomain interactions. They also underline the effectiveness of a comparative approach using calorimetric and structural probes for studying the thermodynamics of a protein.

CFD/CAE Analysis of QC/DC Bellows for LNG Bunkering (LNG 벙커링용 QC/DC 밸로즈의 유동/구조 해석)

  • Jang, Sung-Cheol;Eom, Jeong-Pil;Jung, Hyun-Cheol
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.5
    • /
    • pp.191-195
    • /
    • 2018
  • By using an ANSYS product suite (CFX, Ansys Multiphysics), which is a powerful tool for multiphysics analysis of complicated physical phenomena, we performed a structural stress analysis based on fluid flow and heat transfer phenomena within a quick connect/disconnect (QC/DC) bellows system. Considering the extremely low temperatures in the QC/DC environment, an approach to the problem based on complex multi-physics phenomena, where different phenomena interact with each other, is crucial. Therefore, we use a numerical analysis technique where fluid-thermal-structural interactions are combined. In conclusion, when low temperature fluids flow inside bellows, the expected service life is conspicuously reduced due to the thermal stress caused by heat transfer. Therefore, in future research, a structure with considerably reduced thermal stress by robust design optimization will be derived.

EFFECTS OF PROCESS INDUCED DEFECTS ON THERMAL PERFORMANCE OF FLIP CHIP PACKAGE

  • Park, Joohyuk;Sham, Man-Lung
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.11a
    • /
    • pp.39-47
    • /
    • 2002
  • Heat is always the root of stress acting upon the electronic package, regardless of the heat due to the device itself during operation or working under the adverse environment. Due to the significant mismatch in coefficient of thermal expansion (CTE) and the thermal conductivity (K) of the packaging components, on one hand intensive research has been conducted in order to enhance the device reliability by minimizing the mechanical stressing and deformation within the package. On the other hand the effectiveness of different thermal enhancements are pursued to dissipate the heat to avoid the overheating of the device. However, the interactions between the thermal-mechanical loading has not yet been address fully. in articular when the temperature gradient is considered within the package. To address the interactions between the thermal loading upon the mechanical stressing condition. coupled-field analysis is performed to account the interaction between the thermal and mechanical stress distribution. Furthermore, process induced defects are also incorporated into the analysis to determine the effects on thermal conducting path as well as the mechanical stress distribution. It is concluded that it feasible to consider the thermal gradient within the package accompanied with the mechanical analysis, and the subsequent effects of the inherent defects on the overall structural integrity of the package are discussed.

  • PDF

Thermal Dissociation and Conformational Lock of Superoxide Dismutase

  • Hong, J.;Moosavi-Movahedi, A.A.;Ghourchian, H.;Amani, M.;Amanlou, M.;Chilaka, F.C.
    • BMB Reports
    • /
    • v.38 no.5
    • /
    • pp.533-538
    • /
    • 2005
  • The kinetics of thermal dissociation of superoxide dismutase (SOD) was studied in 0.05 M Tris-HCl buffer at pH 7.4 containing $10^{-4}\;M$ EDTA. The number of conformational locks and contact areas and amino acid residues of dimers of SOD were obtained by kinetic analysis and biochemical calculation. The cleavage bonds between dimers of SOD during thermal dissociation and type of interactions between specific amino acid residues were also simulated. Two identical contact areas between two subunits were identified. Cleavage of these contact areas resulted in dissociation of the subunits, with destruction of the active centers, and thus, lost of activity. It is suggested that the contact areas interact with active centers by conformational changes involving secondary structural elements.

Fire Resistance Characteristics of Firewall Structure Associated with Impact Damage Induced by Explosion

  • Hye Rim Cho;Jeong Hwa Yoo;Jung Kwan Seo
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.99-110
    • /
    • 2023
  • When a fire accident accompanied by an explosion occurs, the surrounding firewalls are affected by impact and thermal loads. Damaged firewalls due to accidental loads may not fully perform their essential function. Therefore, this paper proposes an advanced methodology for evaluating the fire resistance performance of firewalls damaged by explosions. The fragments were assumed to be scattered, and fire occurred as a vehicle exploded in a large compartment of a roll-on/roll-off (RO-RO) vessel. The impact velocity of the fragments was calculated based on the TNT equivalent mass corresponding to the explosion pressure. Damage and thermal-structural response analyses of the firewall were performed using Ansys LS-DYNA code. The fire resistance reduction was analyzed in terms of the temperature difference between fire-exposed and unexposed surfaces, temperature increase rate, and reference temperature arrival time. The degree of damage and the fire resistance performance of the firewalls varied significantly depending on impact loads. When naval ships and RO-RO vessels that carry various explosive substances are designed, it is reasonable to predict that the fire resistance performance will be degraded according to the explosion characteristics of the cargo.

Molecular Dynamics Simulation of Liquid Alkanes III. Thermodynamic, Structural, and Dynamic Properties of Branched-Chain Alkanes

  • 이송희;이홍;박형숙
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.5
    • /
    • pp.501-509
    • /
    • 1997
  • In recent papers[Bull. Kor. Chem. Soc. 1996, 17, 735; ibid 1997, 18, 478] we reported results of molecular dynamics (MD) simulations for the thermodynamic, structural, and dynamic properties of liquid normal alkanes, from n-butane to n-heptadecane, using three different models. Two of the three classes of models are collapsed atomic models while the third class is an atomistically detailed model. In the present paper we present results of MD simulations for the corresponding properties of liquid branched-chain alkanes using the same models. The thermodynamic property reflects that the intermolecular interactions become weaker as the shape of the molecule tends to approach that of a sphere and the surface area decreases with branching. Not like observed in the straight-chain alkanes, the structural properties of model Ⅲ from the site-site radial distribution function, the distribution functions of the average end-to-end distance and the root-mean-squared radii of gyration are not much different from those of models Ⅰ and Ⅱ. The branching effect on the self diffusion of liquid alkanes is well predicted from our MD simulation results but not on the viscosity and thermal conductivity.

A cylindrical shell model for nonlocal buckling behavior of CNTs embedded in an elastic foundation under the simultaneous effects of magnetic field, temperature change, and number of walls

  • Timesli, Abdelaziz
    • Advances in nano research
    • /
    • v.11 no.6
    • /
    • pp.581-593
    • /
    • 2021
  • This model is proposed to describe the buckling behavior of Carbon Nanotubes (CNTs) embedded in an elastic medium taking into account the combined effects of the magnetic field, the temperature, the nonlocal parameter, the number of walls. Using Eringen's nonlocal elasticity theory, thin cylindrical shell theory and Van der Waal force (VdW) interactions, we develop a system of partial differential equations governing the buckling response of CNTs embedded on Winkler, Pasternak, and Kerr foundations in a thermal-magnetic environment. The pre-buckling stresses are obtained by applying airy's stress function and an adjacent equilibrium criterion. To estimate the nonlocal critical buckling load of CNTs under the simultaneous effects of the magnetic field, the temperature change, and the number of walls, an optimization technique is proposed. Furthermore, analytical formulas are developed to obtain the buckling behavior of SWCNTs embedded in an elastic medium without taking into account the effects of the nonlocal parameter. These formulas take into account VdW interactions between adjacent tubes and the effect of terms involving differences in tube radii generally neglected in the derived expressions of the critical buckling load published in the literature. Most scientific research on modeling the effects of magnetic fields is based on beam theories, this motivation pushes me to develop a cylindrical shell model for studying the effect of the magnetic field on the static behavior of CNTs. The results show that the magnetic field has significant effects on the static behavior of CNTs and can lead to slow buckling. On the other hand, thermal effects reduce the critical buckling load. The findings in this work can help us design of CNTs for various applications (e.g. structural, electrical, mechanical and biological applications) in a thermal and magnetic environment.

Generalized thermo-elastic interaction in a fiber-reinforced material with spherical holes

  • Hobiny, Aatef D.;Abbas, Ibrahim A.
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.297-303
    • /
    • 2021
  • In this paper, a mathematical model is used to the evaluation of thermoelastic interactions in fiber-reinforced material with a spherical cavity. With the goal of establishing the generalized thermoelastic model with thermal relaxation time are exploited. inner surface of the spherical cavity is tractions free and loaded by the uniform step in temperature. The finite element scheme is used to get the problem numerical solutions. The numerical results have been discussed graphically to show the impacts of the presence and the absence of reinforcement.

Structural stability of CD1 domain of human mitotic checkpoint serine/threonine-protein kinase, Bub1

  • Kim, Hyun-Hwi;Song, Hyun-Kyu;Lee, Bong-Jin;Park, Sung Jean
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.2
    • /
    • pp.88-94
    • /
    • 2015
  • Bub1 is one of the spindle checkpoint proteins and plays a role in recruitment of the related proteins to kinetochore. Here, we studied the structural characteristic of the evolutionarily conserved 160 amino acid region in the N-terminus (hBub1 CD1), using Circular Dichroism (CD) and NMR. Our CD results showed that hBub1 CD1 is a highly helical protein and its structure was affected by pH: as pH was elevated to basic pH, the helical propensity increased. This could be related to the surface charge of the hBub1 CD1. However, the structural change did not largely depend on the salt concentration, though the thermal stability a little increased. The previous NMR analysis revealed that the hBub1 CD1 adopts eight helices, which is consistent with the CD result. Our result would be helpful for evaluating the molecular mechanism of the hBub1 CD1 and protein-protein interactions.

In-silico characterization and structure-based functional annotation of a hypothetical protein from Campylobacter jejuni involved in propionate catabolism

  • Mazumder, Lincon;Hasan, Mehedi;Rus’d, Ahmed Abu;Islam, Mohammad Ariful
    • Genomics & Informatics
    • /
    • v.19 no.4
    • /
    • pp.43.1-43.12
    • /
    • 2021
  • Campylobacter jejuni is one of the most prevalent organisms associated with foodborne illness across the globe causing campylobacteriosis and gastritis. Many proteins of C. jejuni are still unidentified. The purpose of this study was to determine the structure and function of a non-annotated hypothetical protein (HP) from C. jejuni. A number of properties like physiochemical characteristics, 3D structure, and functional annotation of the HP (accession No. CAG2129885.1) were predicted using various bioinformatics tools followed by further validation and quality assessment. Moreover, the protein-protein interactions and active site were obtained from the STRING and CASTp server, respectively. The hypothesized protein possesses various characteristics including an acidic pH, thermal stability, water solubility, and cytoplasmic distribution. While alpha-helix and random coil structures are the most prominent structural components of this protein, most of it is formed of helices and coils. Along with expected quality, the 3D model has been found to be novel. This study has identified the potential role of the HP in 2-methylcitric acid cycle and propionate catabolism. Furthermore, protein-protein interactions revealed several significant functional partners. The in-silico characterization of this protein will assist to understand its molecular mechanism of action better. The methodology of this study would also serve as the basis for additional research into proteomic and genomic data for functional potential identification.