Browse > Article
http://dx.doi.org/10.12989/sem.2021.78.3.297

Generalized thermo-elastic interaction in a fiber-reinforced material with spherical holes  

Hobiny, Aatef D. (Nonlinear Analysis and Applied Mathematics Research Group (NAAM), Mathematics Department, King Abdulaziz University)
Abbas, Ibrahim A. (Nonlinear Analysis and Applied Mathematics Research Group (NAAM), Mathematics Department, King Abdulaziz University)
Publication Information
Structural Engineering and Mechanics / v.78, no.3, 2021 , pp. 297-303 More about this Journal
Abstract
In this paper, a mathematical model is used to the evaluation of thermoelastic interactions in fiber-reinforced material with a spherical cavity. With the goal of establishing the generalized thermoelastic model with thermal relaxation time are exploited. inner surface of the spherical cavity is tractions free and loaded by the uniform step in temperature. The finite element scheme is used to get the problem numerical solutions. The numerical results have been discussed graphically to show the impacts of the presence and the absence of reinforcement.
Keywords
finite element method; fiber-reinforced medium; spherical cavity; thermal relaxation time;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Nowacki, W. (1975), Dynamic Problems of Thermoelasticity, Springer Science & Business Media.
2 Othman, M.I.A. and Lotfy, K. (2013), "The effect of magnetic field and rotation of the 2-D problem of a fiber-reinforced thermoelastic under three theories with influence of gravity", Mech. Mater., 60, 129-143 https://doi.org/10.1016/j.mechmat.2013.01.007.   DOI
3 Othman, M.I.A. and Said, S.M. (2012), "The effect of mechanical force on generalized thermoelasticity in a fiber-reinforcement under three theories", Int. J. Thermophys., 33(6), 1082-1099. https://doi.org/10.1007/s10765-012-1203-3.   DOI
4 Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2020), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Syst., 25(2), 197-218. http://dx.doi.org/10.12989/sss.2020.25.2.197.   DOI
5 Gupta, R.R. and Gupta, R.R. (2013), "Analysis of wave motion in an anisotropic initially stressed fiberreinforced thermoelastic medium", Earthq. Struct., 4(1), 1-10. http://doi.org/10.12989/eas.2013.4.1.001.   DOI
6 Hashin, Z. and Rosen, B.W. (1964), "The elastic moduli of fiber-reinforced materials", J. Appl. Mech., 31(2), 223-232. https://doi.org/10.1115/1.3629590.   DOI
7 Itu, C., Ochsner, A., Vlase, S. and Marin, M.I. (2019), "Improved rigidity of composite circular plates through radial ribs", Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl., 233(8), 1585-1593. https://doi.org/10.1177/1464420718768049.   DOI
8 Kondaiah, P. and Shankar, K. (2017), "Pyroeffects on Magneto-Electro-Elastic Sensor patch subjected to thermal load", Smart Struct. Syst., 19(3), 299-307. http://doi.org/10.12989/sss.2017.19.3.299.   DOI
9 Kumar, R. and Gupta, R.R. (2010), "Study of wave motion in an anisotropic fiber-reinforced thermoelastic solid", J. Solid Mech., 2(1), 91-100.
10 Mahesh, V., Kattimani, S., Harursampath, D. and Trung, N.-T. (2019), "Coupled evaluation of the free vibration characteristics of magneto-electro-elastic skew plates in hygrothermal environment", Smart Struct. Syst., 24(2), 267-292. http://doi.org/10.12989/sss.2019.24.2.267.   DOI
11 Singh, B. and Singh, S.J. (2004), "Reflection of plane waves at the free surface of a fibre-reinforced elastic half-space", Sadhana, 29(3), 249-257. https://doi.org/10.1007/BF02703774.   DOI
12 Belfield, A., Rogers, T. and Spencer, A. (1983), "Stress in elastic plates reinforced by fibres lying in concentric circles", J. Mech. Phys. Solid., 31(1), 25-54. https://doi.org/10.1016/0022-5096(83)90018-2.   DOI
13 Bhatti, M.M., Marin, M., Zeeshan, A., Ellahi, R. and Abdelsalam, S.I. (2020), "Swimming of Motile Gyrotactic Microorganisms and nanoparticles in blood flow through anisotropically tapered arteries", Front. Phys., 8, 95. https://doi.org/10.3389/fphy.2020.00095.   DOI
14 Biot, M.A. (1956), "Thermoelasticity and irreversible thermodynamics", J. Appl. Phys., 27(3), 240-253. http://dx.doi.org/10.1063/1.1722351.   DOI
15 Ezzat, M. and El-Bary, A. (2016), "Modeling of fractional magneto-thermoelasticity for a perfect conducting materials", Smart Struct. Syst., 18(4), 707-731. http://doi.org/10.12989/sss.2016.18.4.707.   DOI
16 Verma, P. (1986), "Magnetoelastic shear waves in self-reinforced bodies", Int. J. Eng. Sci., 24(7), 1067-1073. https://doi.org/10.1016/0020-7225(86)90002-9.   DOI
17 Othman, M.I.A. and Said, S.M. (2013), "Plane waves of a fiber-reinforcement magneto-thermoelastic comparison of three different theories", Int. J. Thermophys., 34(2), 366-383. https://doi.org/10.1007/s10765-013-1417-z.   DOI
18 Sadowski, T., Marsavina, L., Peride, N. and Craciun, E.-M. (2009), "Cracks propagation and interaction in an orthotropic elastic material: analytical and numerical methods", Comput. Mater. Sci., 46(3), 687-693. https://doi.org/10.1016/j.commatsci.2009.06.006.   DOI
19 Saeed, T., Abbas, I. and Marin, M. (2020), "A GL model on thermo-elastic interaction in a poroelastic material using finite element method", Symmetry, 12(3), 488. https://doi.org/10.3390/sym12030488.   DOI
20 Sengupta, P. and Nath, S. (2001), "Surface waves in fibre-reinforced anisotropic elastic media", Sadhana, 26(4), 363-370. https://doi.org/10.1007/BF02703405.   DOI
21 Singh, V.K. and Panda, S.K. (2015), "Large amplitude free vibration analysis of laminated composite spherical shells embedded with piezoelectric layers", Smart Struct. Syst., 16(5), 853-872. http://doi.org/10.12989/sss.2015.16.5.853.   DOI
22 Spencer, A.J.M. (1972), Deformations of Fibre-reinforced Materials, Clarendon Press, Oxford.
23 Abbas, I.A. (2015), "Eigenvalue approach to fractional order generalized magneto-thermoelastic medium subjected to moving heat source", J. Magnet. Magnetic Mater., 377, 452-459. https://doi.org/10.1016/j.jmmm.2014.10.159.   DOI
24 Zenkour, A.M. and Abbas, I.A. (2014), "A generalized thermoelasticity problem of an annular cylinder with temperature-dependent density and material properties", Int. J. Mech. Sci., 84, 54-60. https://doi.org/10.1016/j.ijmecsci.2014.03.016.   DOI
25 Zenkour, A.M. and Abbas, I.A. (2014), "Magneto-thermoelastic response of an infinite functionally graded cylinder using the finite element model", J. Vib. Control, 20(12), 1907-1919. https://doi.org/10.1177/1077546313480541.   DOI
26 Mohamed, R., Abbas, I.A. and Abo-Dahab, S. (2009), "Finite element analysis of hydromagnetic flow and heat transfer of a heat generation fluid over a surface embedded in a non-Darcian porous medium in the presence of chemical reaction", Commun. Nonlin. Sci. Numer. Simul., 14(4), 1385-1395. https://doi.org/10.1016/j.cnsns.2008.04.006.   DOI
27 Abbas, I.A. (2011), "A two-dimensional problem for a fibre-reinforced anisotropic thermoelastic half-space with energy dissipation", Sadhana-Acad. Proc. Eng. Sci., 36(3), 411-423. https://doi.org/10.1007/s12046-011-0025-5.   DOI
28 Abbas, I.A. (2013), "A GN model for thermoelastic interaction in an unbounded fiber-reinforced anisotropic medium with a circular hole", Appl. Math. Lett., 26(2), 232-239. https://doi.org/10.1016/j.aml.2012.09.001.   DOI
29 Abbas, I.A. (2014), "The effects of relaxation times and a moving heat source on a two-temperature generalized thermoelastic thin slim strip", Can. J. Phys., 93(5), 585-590. http://dx.doi.org/10.1139/cjp-2014-0387.   DOI
30 Abbas, I.A. (2014), "Nonlinear transient thermal stress analysis of thick-walled FGM cylinder with temperature-dependent material properties", Meccanica, 49(7), 1697-1708. https://doi.org/10.1007/s11012-014-9948-3.   DOI
31 Abbas, I.A. and Alzahrani, F.S. (2016), "Analytical solution of a two-dimensional thermoelastic problem subjected to laser pulse", Steel Compos. Struct., 21(4), 791-803. https://doi.org/10.12989/scs.2016.21.4.791.   DOI
32 Khan, A.A., Bukhari, S.R., Marin, M. and Ellahi, R. (2019), "Effects of chemical reaction on third-grade MHD fluid flow under the influence of heat and mass transfer with variable reactive index", Heat Transf. Res., 50(11), 1061-1080, https://doi.org/10.1615/HeatTransRes.2018028397.   DOI
33 Abbas, I.A., El-Amin, M. and Salama, A. (2009), "Effect of thermal dispersion on free convection in a fluid saturated porous medium", Int. J. Heat Fluid Flow, 30(2), 229-236. https://doi.org/10.1016/j.ijheatfluidflow.2009.01.004.   DOI
34 Abbas, I.A. and Kumar, R. (2016), "2D deformation in initially stressed thermoelastic half-space with voids", Steel Compos. Struct., 20(5), 1103-1117. https://doi.org/10.12989/scs.2016.20.5.1103.   DOI
35 Arefi, M. and Zenkour, A.M. (2017), "Nonlinear and linear thermo-elastic analyses of a functionally graded spherical shell using the Lagrange strain tensor", Smart Struct. Syst., 19(1), 33-38. http://doi.org/10.12989/sss.2017.19.1.033.   DOI
36 Abbas, I.A. and Marin, M. (2017), "Analytical solution of thermoelastic interaction in a half-space by pulsed laser heating", Physica E: Low Dimens. Syst. Nanostruct., 87, 254-260. https://doi.org/10.1016/j.physe.2016.10.048.   DOI
37 Abbas, I.A. and Zenkour, A.M. (2014), "The effect of rotation and initial stress on thermal shock problem for a fiber-reinforced anisotropic half-space using Green-Naghdi theory", J. Comput. Theor. Nanos., 11(2), 331-338. https://doi.org/doi/10.1166/jctn.2014.3356.   DOI
38 Zenkour, A.M. and Abbas, I.A. (2014), "Thermal shock problem for a fiber-reinforced anisotropic half-space placed in a magnetic field via GN model", Appl. Math. Comput., 246 482-490. https://doi.org/10.1016/j.amc.2014.08.052.   DOI
39 Abouelregal, A.E. and Zenkour, A.M. (2013), "The effect of fractional thermoelasticity on a two-dimensional problem of a mode i crack in a rotating fiber-reinforced thermoelastic medium", Chin. Phys. B, 22(10), 108102. https://doi.org/10.1088/1674-1056/22/10/108102.   DOI
40 Alzahrani, F.S. and Abbas, I.A. (2016), "The effect of magnetic field on a thermoelastic fiber-reinforced material under GN-III theory", Steel Compos. Struct., 22(2), 369-386. http://dx.doi.org/10.12989/scs.2016.22.2.369.   DOI
41 Ma, Y., Cao, L. and He, T. (2018), "Variable properties thermopiezoelectric problem under fractional thermoelasticity", Smart Struct. Syst., 21(2), 163-170. http://doi.org/10.12989/sss.2018.21.2.163.   DOI
42 Sarkar, N. and Lahiri, A. (2013), "The effect of gravity field on the plane waves in a fiber-reinforced two-temperature magneto-thermoelastic medium under lord-shulman theory", J. Therm. Stress., 36(9), 895-914. https://doi.org/10.1080/01495739.2013.770709.   DOI
43 Abbas, I.A. and Kumar, R. (2014), "Deformation due to thermal source in micropolar generalized thermoelastic half-space by finite element method", J. Comput. Theor. Nanosci., 11(1), 185-190. https://doi.org/10.1166/jctn.2014.3335.   DOI
44 Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solid., 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5.   DOI
45 Lotfy, K. (2012), "Mode-I crack in a two-dimensional fibre-reinforced generalized thermoelastic problem", Chin. Phys. B, 21(1), 014209. https://doi.org/10.1088/1674-1056/21/1/014209.   DOI
46 Lotfy, K. and Othman, M.I.A. (2014), "The effect of magnetic field on 2-D problem for a mode-I Crack of a fiber-reinforced in generalized Thermoelasticity", Int. J. Thermophys., 35(1), 154-174. https://doi.org/10.1007/s10765-013-1540-x.   DOI
47 Marin, M. (2010), "Lagrange identity method for microstretch thermoelastic materials", J. Math. Anal. Appl., 363(1), 275-286. https://doi.org/10.1016/j.jmaa.2009.08.045.   DOI
48 Marin, M., Vlase, S., Ellahi, R. and Bhatti, M. (2019), "On the partition of energies for the backward in time problem of thermoelastic materials with a dipolar structure", Symmetry. 11(7), 863. https://doi.org/10.3390/sym11070863.   DOI
49 Marin, M., Ellahi, R. and Chirila, A. (2017), "On solutions of Saint-Venant's problem for elastic dipolar bodies with voids", Carpath. J. Math., 33(2), 219-232.
50 Marin, M. and Nicaise, S. (2016), "Existence and stability results for thermoelastic dipolar bodies with double porosity", Continu. Mech. Thermodyna., 28(6), 1645-1657. https://doi.org/10.1007/s00161-016-0503-4.   DOI