Browse > Article
http://dx.doi.org/10.6564/JKMRS.2015.19.2.088

Structural stability of CD1 domain of human mitotic checkpoint serine/threonine-protein kinase, Bub1  

Kim, Hyun-Hwi (College of Pharmacy, Gachon University)
Song, Hyun-Kyu (School of Life Sciences and Biotechnology, Korea University)
Lee, Bong-Jin (Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University)
Park, Sung Jean (College of Pharmacy, Gachon University)
Publication Information
Journal of the Korean Magnetic Resonance Society / v.19, no.2, 2015 , pp. 88-94 More about this Journal
Abstract
Bub1 is one of the spindle checkpoint proteins and plays a role in recruitment of the related proteins to kinetochore. Here, we studied the structural characteristic of the evolutionarily conserved 160 amino acid region in the N-terminus (hBub1 CD1), using Circular Dichroism (CD) and NMR. Our CD results showed that hBub1 CD1 is a highly helical protein and its structure was affected by pH: as pH was elevated to basic pH, the helical propensity increased. This could be related to the surface charge of the hBub1 CD1. However, the structural change did not largely depend on the salt concentration, though the thermal stability a little increased. The previous NMR analysis revealed that the hBub1 CD1 adopts eight helices, which is consistent with the CD result. Our result would be helpful for evaluating the molecular mechanism of the hBub1 CD1 and protein-protein interactions.
Keywords
NMR; CD; Bub1; human mitotic checkpoint serine/threonine-protein kinase;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 R. Fraschini, A. Beretta, L. Sironi, A. Musacchio, G. Lucchini, and S. Piatti, EMBO. J. 20, 6648 (2001)   DOI
2 Y. Zhang and E. Lees, Mol. Cell. Biol. 21, 5190 (2001)   DOI
3 R. H. Chen, J. Cell. Biol. 158, 487 (2002)   DOI
4 J. M. Peters, Mol. Cell. 9, 931 (2002)   DOI
5 J. Basu, E. Logarinho, S. Herrmann, H. Bousbaa, Z. Li, G. K. Chan, T. J. Yen, C. E. Sunkel, and M. L. Goldberg, Chromosoma. 107, 376 (1998)   DOI
6 S. S. Taylor, E. Ha, and F. McKeon, J. Cell Biol. 142, 1 (1998)   DOI
7 H. Sharp-Baker and R. H. Chen, J. Cell. Biol. 153, 1239 (2001)   DOI
8 R. H. Chen, A. Shevchenko, M. Mann, and A. W. Murray, J. Cell. Biol. 143, 283 (1998)   DOI
9 E. Chung and R. H. Chen, Mol. Biol. Cell. 13, 1501 (2002)   DOI
10 P. S. Shapiro, E. Vaisberg, A. J. Hunt, N. S. Tolwinski, A. M. Whalen, J. R. McIntosh, and N. G. Ahn, J. Cell. Biol. 142, 1533 (1998)   DOI
11 M. Zecevic, A. D. Catling, S. T. Eblen, L. Renzi, J. C. Hittle, T. J. Yen, G. J. Gorbsky, and M. J. Weber, J. Cell. Biol. 142, 1547 (1998)   DOI
12 J. Minshull, H. Sun, N. K. Tonks, and A. W. Murray, Cell. 79, 475 (1994)   DOI
13 X. M. Wang, Y. Zhai, and J. E. Ferrell, J. Cell. Biol. 137, 433 (1997)   DOI
14 F. Delaglio, S. Grzesiek, G. W. Vuister, G. Zhu, J. Pfeifer, and A. Bax, J. Biomol. NMR. 6, 277 (1995)
15 B. A. Johnson and R. A. Blevins, J. Biomol. NMR. 4, 603 (1994)   DOI
16 S. J. Park, J. Korean Magn. Reson. Soc. 18, 47 (2014)   DOI
17 S.-J. Hur, H.-W. Lee, A.-H. Shin, and S. J. Park, J. Korean Magn. Reson. Soc. 18, 10 (2014)   DOI
18 S. J. Park, H.-H. Kim, Y.-S. Jung, S.-J. Kang, H.-K. Cheong, H.-K. Song, and B.-J. Lee, Biomol NMR Assign 6, 109 (2012)   DOI
19 X. Li and R. B. Nicklas, Nature. 373, 630 (1995)   DOI
20 C. L. Rieder, R. W. Cole, A. Khodjakov, and G. Sluder, J. Cell. Biol. 130, 941 (1995)   DOI
21 D. W. Cleveland, Y. Mao, and K. F. Sullivan, Cell. 112, 407 (2003)   DOI
22 K. G. Hardwick, R. C. Johnston, D. L. Smith, and A. W. Murray, J. Cell. Biol. 148, 871 (2000)   DOI