• Title/Summary/Keyword: Thermal-mechanical characteristics

Search Result 1,978, Processing Time 0.032 seconds

Experimental Study on the Stimulating Effect of Commercial Moxa Combustion through the Measurement of Temperature -Focused on Combustion time and temperature- (온도 측정을 통한 상용 쑥뜸의 자극효과에 대한 실험적 연구 -연소시간 및 연소온도를 중심으로-)

  • Lee, Geon-Mok;Yang, Yoo-Sun;Lee, Gun-Hyee
    • Journal of Acupuncture Research
    • /
    • v.19 no.2
    • /
    • pp.114-127
    • /
    • 2002
  • Objective : The purpose of this study is to investigate the mechanism and effect of moxibustion objectively and to be used as the quantitative data for developing the new thermal stimulating treatment by observing the combustion time and temperature of commercial moxaes. Methods : We have selected two types(large-size moxa A(LMA), large-size moxa B (LMB)) among large moxaes used widely in the clinic. We examined combustion times, temperatures in each period during a combustion of moxa. Results : 1. The combustion time in the preheating period was about 30sec in both moxaes on the non-contact heated surface. 2. The combustion time in the heating period was about 345sec in LMA and about 1391 sec in LMB, about 4 times longer in LMB on the non-contact surface. 3. The maximum temperature in the heating period was $44.5^{\circ}C$ in LMA and $45.4^{\circ}C$ in LMB respectively, higher by $0.9^{\circ}C$ in LMB. The average temperature in the heating period was $35.5{\sim}37.6^{\circ}C$ in LMA and $36.0{\sim}39.8^{\circ}C$ in LMB, a little higher in LMB. 4. The combustion time in the retaining period in LMA was 45.4sec and 13% of that in the heating period, and in LMB 594.7sec and 43% of that in the heating period on the non-contact surface. 5. On the point(PH) measured maximum temperature, the average temperature during the retaining period was $44.0^{\circ}C$, $42.9^{\circ}C$ respectively and the temperature at an end of the retaining period was $43.0^{\circ}C$, $40.2^{\circ}C$ respectively. 6. The time at a beginning of the cooling period was about 418 sec from ignition in LMA and 2021sec in LMB, and the temperature at that time was $36.9{\sim}39.1^{\circ}C$ on the non-contact surface. Conclusion : It was thought that not only the figure of moxicombustion device, but also the form and size of moxa had influence on the combustion characteristics deciding the performance of stimulus seriously.

  • PDF

The Study on Phase Separation Development by Curing Reaction Rate for Unsaturated Polyester/Polyvinylacetate Semi-IPN (Unsaturated Polyester/Polyvinylacetate Semi-IPN의 경화반응속도에 따른 상분리현상 연구)

  • Chang, Won-Young;Kim, Moo-Sool;Kim, Jin-Hwan;Nam, Jae-Do
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.78-89
    • /
    • 2001
  • Morphological changes of unsaturated polyester/polyvinylacetate semi-IPN were studied while the phase separation and the cure reaction occurred in a competing fashion. The light scattering and thermal analysis techniques were used to investigate the phase separation rates and mechanical properties resultantly induced by molecular diffusion of thermoplastic polymer during the curing process of thermosetting polymer. The reaction activation energy was calculated by using Flynn-Wall method and the semi-IPN structure exhibited various phase-separation morphological characteristics. When PVAc composition was 10 wt%, the phase separation was not observed during the curing reaction, but the phase separation occurred in a similar fashion to nucleation and growth(NG) mechanism at room temperature. On the other hand, when PVAc composition was over 11.65 wt%, the phase separation was generated in the middle of the curing process. Consequently, the phase separation seemed to influence the curing reaction rate, which was also supported by the changing activation energy with conversion and PVAc composition. Finally, the total scattered intensity was measured at various temperature, and subsequently the diffusion rates of phase separation R(${\beta}m$) were evaluated.

  • PDF

Development of Adhesive Resins Formulated with Rapeseed Flour Hydrolyzates for Laminated Veneer Lumber and Its Performance Evaluation (유채박을 이용한 단판적층재용 접착제의 개발 및 성능평가)

  • Yang, In;Han, Gyu-Seong;Choi, In-Gyu;Kim, Yong-Hyun;Ahn, Sye-Hee;Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.3
    • /
    • pp.221-229
    • /
    • 2011
  • Due to the increase of oil price and the environmental issue such as the emission of volatile organic compounds, the necessity for developing alternative resins of petroleum-based adhesive resins, which have extensively been used for the manufacture of wood-based products, has been speculation since the early 1990. In our study, rapeseed flour (RSF), which is the by-product of bio-diesel produced from rapeseed, were hydrolyzed by enzymes. As a crosslinking agents of the RSF hydrolyzates, phenol-formaldehyde prepolymers (PF) were prepared. The RSF hydrolyzates and PF were mixed to complete the formulation of RSF-based adhesive resins, and the resins were applied to make the laminated veneer lumber (LVL). The physical and mechanical properties of the LVL were measured to examine whether RSF can be used as raw materials of adhesive resins for the fabrication of LVL or not. The average moisture content and soaking delamination rate of the LVL bonded with RSF-based adhesive resins exceeded the minimum requirement of KS standard. Moreover, thermal analysis of the RSF-based resins showed similar tendencies except for the RSF-based adhesive resins formulated with pectinase-hydrolyzed RSF. The bending strengths of the LVL were higher than that of the LVL made with commercial PF resins. These results showed the potential of RSF as a raw material of alternative adhesives for the production of LVL. Further works on the optimal conditions of RSF hydrolysis and spreading characteristics for RSF-based adhesive resins is required to improve the adhesive performance of RSF-based resins.

Wet Surface Air-Side Performance of Fin-and-Tube Heat Exchangers Having Sine Wave Fins and Oval Tubes (사인 웨이브 핀과 타원관으로 구성된 핀-관 열교환기의 공기측 습표면 성능)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2415-2423
    • /
    • 2015
  • Experiments were conducted on sine wave fin-and-tube heat exchangers having oval tubes under wet condition. Oval tubes having an aspect ratio of 0.6 were made, by deforming 12.7mm round tubes. Twelve samples, having different fin pitch and tube row, were tested. Results showed that, for oval tube samples, the effect of fin pitch on j and f factor was not significant. As for the effect of tube row, the lowest j factor was obtained for one row configuration(81% of two row configuration), which is clear contrast to round tube samples, where the highest j factor was obtained for one row configuration. Possible reasoning is provided considering the flow and heat transfer characteristics of sine wave channel combined with connecting oval tubes. Comparison of $j/f^{1/3}$ with plain fin-and-tube heat exchanger having 15.9mm O.D. round tube reveals that present oval fin-and-tube heat exchanger shows superior thermal performance except for one row configuration. In other words, $j/f^{1/3}$ of the two row oval tube heat exchanger was 1.6~2.5 times larger than those of round tube heat exchanger, 1.4~2.4 times larger for three row configuration and 1.2~2.8 times for four row configuration.

A New Organic Modifiers for Anti-Stiction (부착방지를 위한 새로운 표면 개질 물질)

  • Kim, Bong-Hwan;Chun, Kuk-Jin;Lee, Yoon-Sik
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.102-110
    • /
    • 2002
  • The chemical and mechanical characteristics of a new surface modifier, dichlorodimethysilane (DDMS, $(CH_3)_3SiCl_2$), for stiction-free polysilicon surfaces are reported. The main strategy is to replace the conventional monoalkyltrichlorosilane(MTS, $RSiCl_3$) such as octadecyltrichlorosilane (ODTS) or 1H,1H,2H,2H-perfluorodecyltrichlorosilane (FDTS) with dialkyldichlorosilane (DDS, $R_2SiCl_2$) with twit short chains, especially DDMS. DDMS, with shorter chains in aprotic media, rapidly deposits on the chemically oxidized polysilicon surface at room temperature and successfully prevents long cantilevers of 3 mm in length from in-use as well as release stiction. DDMS-modified polysilicon surfaces exhibit satisfactory hydrophobicity, long term stability and thermal stability, which are comparable to those of FDTS. DDMS as an alternative to FDTS and ODTS provides a few valuable advantages; ease in handling and long-term storage in solution, low temperature-dependence and low cost. In addition to the new modifier molecule, the simplified process of direct release right after washing the modified surface with isooctane was proposed to cut the processing time.

Pre-treatment Technology of Wastewater Sludge for Enhanced Biogas Production in Anaerobic Digestion (혐기소화에서의 바이오가스 생산 증진을 위한 슬러지 전처리 기술)

  • Kim, Dong-Jin
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.355-369
    • /
    • 2013
  • Economic feasibility is one of the most important factors in energy production from regenerative biomass. From the aspect, biogas from anaerobic digestion of wastewater sludge is regarded as the most economical because of its cheap substrate and additional income from the disposal of waste sludge. Sludge hydrolysis has been regarded as the rate limiting step of anaerobic digestion and many sludge pre-treatment technologies have been developed to accelerate anaerobic sludge digestion for enhanced biogas production. Various sludge pre-treatment technologies including biological, thermo hydrolysis, ultrasonic, and mechanical methods have been applied to full-scale systems. Sludge pre-treatment increased the efficiency of anaerobic digestion by enhancing hydrolysis, reducing residual soilds, and increasing biogas production. This paper introduces the characteristics of various sludge pre-treatment technologies and the energy balance and economic feasibility of each technology were compared to prepare a guideline for the selection of feasible pre-treatment technology. It was estimated that thermophilic digestion and thermal hydrolysis were most economical technology followed by Cell rupture$^{TM}$, OpenCEL$^{TM}$, MicroSludge$^{TM}$, and ultrasound. The cost for waste sludge disposal shares the biggest portion in the economic analysis, therefore, water content of the waste sludge was the most important factor to be controlled.

Electrical Characteristics of c-Si Shingled Photovoltaic Module Using Conductive Paste based on SnBiAg (SnBiAg 전도성 페이스트를 이용한 Shingled 결정질 태양광 모듈의 전기적 특성 분석)

  • Yoon, Hee-Sang;Song, Hyung-Jun;Kang, Min Gu;Cho, Hyeon Soo;Go, Seok-Whan;Ju, Young-Chul;Chang, Hyo Sik;Kang, Gi-Hwan
    • Korean Journal of Materials Research
    • /
    • v.28 no.9
    • /
    • pp.528-533
    • /
    • 2018
  • In recent years, solar cells based on crystalline silicon(c-Si) have accounted for much of the photovoltaic industry. The recent studies have focused on fabricating c-Si solar modules with low cost and improved efficiency. Among many suggested methods, a photovoltaic module with a shingled structure that is connected to a small cut cell in series is a recent strong candidate for low-cost, high efficiency energy harvesting systems. The shingled structure increases the efficiency compared to the module with 6 inch full cells by minimizing optical and electrical losses. In this study, we propoese a new Conductive Paste (CP) to interconnect cells in a shingled module and compare it with the Electrical Conductive Adhesives (ECA) in the conventional module. Since the CP consists of a compound of tin and bismuth, the module is more economical than the module with ECA, which contains silver. Moreover, the melting point of CP is below $150^{\circ}C$, so the cells can be integrated with decreased thermal-mechanical stress. The output of the shingled PV module connected by CP is the same as that of the module with ECA. In addition, electroluminescence (EL) analysis indicates that the introduction of CP does not provoke additional cracks. Furthermore, the CP soldering connects cells without increasing ohmic losses. Thus, this study confirms that interconnection with CP can integrate cells with reduced cost in shingled c-Si PV modules.

Effects of Heat Treatment Conditions of FeC2O4·2H2O on the Formation of Fe3O4-δ (FeC2O4·2H2O의 열처리 조건이 Fe3O4-δ 형성에 미치는 영향)

  • Oh, Kyoung-Hwan;Park, Won-Shik;Rhee, Sang-In;Suhr, Dong-Soo
    • Korean Journal of Materials Research
    • /
    • v.22 no.11
    • /
    • pp.620-625
    • /
    • 2012
  • A general synthetic method to make $Fe_3O_{4-{\delta}}$ (activated magnetite) is the reduction of $Fe_3O_4$ by $H_2$ atmosphere. However, this process has an explosion risk. Therefore, we studied the process of synthesis of $Fe_3O_{4-{\delta}}$ depending on heat-treatment conditions using $FeC_2O_4{\cdot}2H_2O$ in Ar atmosphere. The thermal decomposition characteristics of $FeC_2O_4{\cdot}2H_2O$ and the ${\delta}$-value of $Fe_3O_{4-{\delta}}$ were analyzed with TG/DTA in Ar atmosphere. ${\beta}-FeC_2O_4{\cdot}2H_2O$ was synthesized by precipitation method using $FeSO_4{\cdot}7H_2O$ and $(NH_4)_2C_2O_4{\cdot}H_2O$. The concentration of the solution was 0.1 M and the equivalent ratio was 1.0. ${\beta}-FeC_2O_4{\cdot}2H_2O$ was decomposed to $H_2O$ and $FeC_2O$4 from $150^{\circ}C$ to $200^{\circ}C$. $FeC_2O4$ was decomposed to CO, $CO_2$, and $Fe_3O_4$ from $200^{\circ}C$ to $250^{\circ}C$. Single phase $Fe_3O_4$ was formed by the decomposition of ${\beta}-FeC_2O_4{\cdot}2H_2O$ in Ar atmosphere. However, $Fe_3C$, Fe and $Fe_4N$ were formed as minor phases when ${\beta}-FeC_2O_4{\cdot}2H_2O$ was decomposed in $N_2$ atmosphere. Then, $Fe_3O_4$ was reduced to $Fe_3O_{4-{\delta}}$ by decomposion of CO. The reduction of $Fe_3O_4$ to $Fe_3O_{4-{\delta}}$ progressed from $320^{\circ}C$ to $400^{\circ}C$; the reaction was exothermic. The degree of exothermal reaction was varied with heat treatment temperature, heating rate, Ar flow rate, and holding time. The ${\delta}$-value of $Fe_3O_{4-{\delta}}$ was greatly influenced by the heat treatment temperature and the heating rate. However, Ar flow rate and holding time had a minor effect on ${\delta}$-value.

State-of-Arts of Primary Concrete Degradation Behaviors due to High Temperature and Radiation in Spent Fuel Dry Storage (사용후핵연료 건식저장 콘크리트의 고열과 방사선으로 인한 주요 열화거동 분석)

  • Kim, Jin-Seop;Kook, Donghak;Choi, Jong-Won;Kim, Geon-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.243-260
    • /
    • 2018
  • A literature review on the effects of high temperature and radiation on radiation shielding concrete in Spent Fuel Dry Storage is presented in this study with a focus on concrete degradation. The general threshold is $95^{\circ}C$ for preventing long-term degradation from high temperature, and it is suggested that the temperature gradient should be less than $60^{\circ}C$ to avoid crack generation in concrete structures. The amount of damage depends on the characteristics of the concrete mixture, and increases with the temperature and exposure time. The tensile strength of concrete is more susceptible than the compressive strength to degradation due to high temperature. Nuclear heating from radiation can be neglected under an incident energy flux density of $10^{10}MeV{\cdot}cm^{-2}{\cdot}s^{-1}$. Neutron radiation of >$10^{19}n{\cdot}cm^{-2}$ or an integrated dose of gamma radiation exceeding $10^{10}$ rads can cause a reduction in the compressive and tensile strengths and the elastic moduli. When concrete is highly irradiated, changes in the mechanical properties are primarily caused by variation in water content resulting from high temperature, volume expansion, and crack generation. It is necessary to fully utilize previous research for effective technology development and licensing of a Korean dry storage system. This study can serve as important baseline data for developing domestic technology with regard to concrete casks of an SF (Spent Fuel) dry storage system.

A study on the heat recovery Characteristics of double tube type heat recovery ventilation system by double pipe material (이중관 재질에 따른 이중관형 열회수 환기장치의 열회수 특성 연구)

  • Kim, Eun-Young;Cho, Jin-Pyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.21-26
    • /
    • 2017
  • In this study, performance tests were conducted to investigate the applicability of a double-tube heat recovery ventilation system. Paper, aluminum, polymer, were investigated as materials for the inner tube using the same exhaust-air volume. In all cases, the temperature exchange efficiency of the aluminum tube was the highest, while the paper tube showed similar results to those of the polymer tube. This probably resulted from the differences in thermal conductivity and thicknesses of the materials. The humidity exchange efficiency was the highest for the paper tubes in all cases, while the aluminum tubes and polymer tubes showed similar results. The total heat exchange efficiency, which includes the values of humidity exchange and temperature exchange, was highest in the case of the paper tube, and the aluminum tube and the polymer tube showed similar results. In the case of the paper tube, sensible heat and latent heat exchange occur at the same time, and the coefficient of energy of the aluminum tube and polymer tube are large values, when to be compared with only applicably sensible heat exchange coefficient of the aluminum tube and the polymer tube of total heat exchange efficiency value. The results of this study could be applied to the design of a ventilation system.