• 제목/요약/키워드: Thermal-fluid analysis

검색결과 805건 처리시간 0.029초

NUMERICAL ANALYSIS OF THERMAL STRATIFICATION IN THE UPPER PLENUM OF THE MONJU FAST REACTOR

  • Choi, Seok-Ki;Lee, Tae-Ho;Kim, Yeong-Il;Hahn, Dohee
    • Nuclear Engineering and Technology
    • /
    • 제45권2호
    • /
    • pp.191-202
    • /
    • 2013
  • A numerical analysis of thermal stratification in the upper plenum of the MONJU fast breeder reactor was performed. Calculations were performed for a 1/6 simplified model of the MONJU reactor using the commercial code, CFX-13. To better resolve the geometrically complex upper core structure of the MONJU reactor, the porous media approach was adopted for the simulation. First, a steady state solution was obtained and the transient solutions were then obtained for the turbine trip test conducted in December 1995. The time dependent inlet conditions for the mass flow rate and temperature were provided by JAEA. Good agreement with the experimental data was observed for steady state solution. The numerical solution of the transient analysis shows the formation of thermal stratification within the upper plenum of the reactor vessel during the turbine trip test. The temporal variations of temperature were predicted accurately by the present method in the initial rapid coastdown period (~300 seconds). However, transient numerical solutions show a faster thermal mixing than that observed in the experiment after the initial coastdown period. A nearly homogenization of the temperature field in the upper plenum is predicted after about 900 seconds, which is a much shorter-term thermal stratification than the experimental data indicates. This discrepancy may be due to the shortcoming of the turbulence models available in the CFX-13 code for a natural convection flow with thermal stratification.

용탕유동과 응고를 고려한 주조공정의 유한요소해석 (Finite element analysis of casting processes considering molten-metal flow and solidification)

  • 윤석일;김용환
    • 한국정밀공학회지
    • /
    • 제13권3호
    • /
    • pp.110-122
    • /
    • 1996
  • Finite element analysis tool was developed to analyze the casting process. Generally, casting process consists of mold filling and solidification. Both filling and solidication process were simulated simultaneously to investigate the effects of process variables and to predict the defect. At filling process, thermal coupling was especially considered to investigate thermal history of material during the filling stage. And thermal condition at the final stage of filling is used as the initial conditions in a solidification process for the exact simullation of the actual casting processes. At mold filling process, Lagragian-type finite element method with automatic remeshing scheme was used to find the material flow. A perturbation method with artificial viscosity is adopted to avoid numerical instability in low viscous fluid. At solidification process, enthalpy-based finite element method was used to solove the heat transfer problem with phase change. And elastic stress analysis has been performed to predict the thermal residual stress. Through the FE analysis, solidification time, position of solidus line, liquidus line and thermal residual stress are found. Through the study, the importance of combined analysis has been emphasized. Finite element tools developed in this study will be used process design of casting process and may be basic structure for total CAE system of castings which will be constructed afterward.

  • PDF

Analysis of Fluid-thermal Coupling in Ferrofluid Bearing Used in High Speed Machines

  • Yin, Xin;Ma, Jien;Fang, Youtong;Jin, Shuai
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권4호
    • /
    • pp.421-428
    • /
    • 2013
  • This paper describes analysis of journal bearings lubricated with ferrofluid, which are very suitable for high speed machines. Comparing to conventional lubricants, the coupling of hydrodynamic, thermal and magnetic properties of ferrofluid adds to the complexity in analysis. Modified Reynolds equation and energy equation are derived and solved numerically using finite volume method. Pressure distribution is got which takes temperature effect into consideration. Static characteristics are then discussed. One optimal scheme is also got according to analysis results.

열전도 물체가 존재하는 캐비티내 자연대류 열전달에 대한 수치적 연구 (NUMERICAL STUDY ON NATURAL CONVECTION HEAT TRANSFER IN A CAVITY CONTAINING A CENTERED HEAT CONDUCTING BODY)

  • 명현국;전태현
    • 한국전산유체공학회지
    • /
    • 제10권3호
    • /
    • pp.36-42
    • /
    • 2005
  • The present study numerically investigates the natural convection heat transfer in a 2-D square cavity containing a centered heat conducting body. Special emphasis is given to the influences of the Rayleigh number, the dimensionless conducting body size, and the ratio of the thermal diffusivity of the body to that of the fluid on the natural convection heat transfer in overall concerned region. The analysis reveals that the fluid flow and heat transfer processes are governed by all of them. Results for isotherms, vector plots and wall Nusselt numbers are reported for Pr = 0.71 and relatively wide ranges of the other parameters. Heat transfer across the cavity, in comparison to that in the absence of a body, are enhanced (reduced) in general by a body with a thermal diffusivity ratio less (greater) than unity. It is also found that the heat transfer attains a minimum as the body size is increased with a thermal diffusivity ratio greater than unity.

Influence of thermal radiation and magnetohydrodynamic on the laminar flow: Williamson fluid for velocity profile

  • Muzamal Hussain;Humaira Sharif;Mohammad Amien Khadimallah;Hamdi Ayed;Abir Mouldi;Muhammad Naeem Mohsin;Sajjad Hussain;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • 제16권4호
    • /
    • pp.427-434
    • /
    • 2024
  • Latest advancement in field of fluid dynamics has taken nanofluid under consideration which shows large thermal conductance and enlarges property of heat transformation in fluids. Motivated by this, the key aim of the current investigation scrutinizes the influence of thermal radiation and magnetohydrodynamic on the laminar flow of an incompressible two-dimensional Williamson nanofluid over an inclined surface in the presence of motile microorganism. In addition, the impact of heat absorption/generation and Arrhenius activation energy is also examined. A mathematical modeled is developed which stimulate the physical flow problem. By using the compatible similarities, we transfer the governing PDEs into ODEs. The analytic approach based on Homotopy analysis method is introduced to impose the analytic solution by using Mathematica software. The impacts of distinct pertinent variable on velocity profiles are investigated through graphs.

원형 T분기배관 내 누설유동의 열성층화와 난류침투에 관한 전산해석적 연구 (Numerical Analysis of Thermal Stratification and Turbulence Penetration into Leaking Flow in a Circular Branch Piping)

  • 한성민;최영돈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1833-1838
    • /
    • 2003
  • In the nuclear power plant, emergency core coolant system(ECCS) is furnished at reactor coolant system(RCS) in order to cool down high temperature water in case of emergency. However, in this coolant system, thermal stratification phenomenon can be occurred due to coolant leaking in the check valve. The thermal stratification produces excessive thermal stresses at the pipe wall so as to yield thermal fatigue crack(TFC) accident. In the present study, when the turbulence penetration occurs in the branch piping, the maximum temperature differences of fluid at the pipe cross-sections of the T-branch with thermal stratification are examine

  • PDF

저온 열원과 LNG 냉열을 이용하는 암모니아-물 동력 사이클의 열역학적 성능 해석 (Thermodynamic Performance Analysis of Ammonia-Water Power Generation System Using Low-temperature Heat Source and Liquefied Natural Gas Cold Energy)

  • 김경훈;김경천
    • 대한기계학회논문집B
    • /
    • 제38권6호
    • /
    • pp.483-491
    • /
    • 2014
  • 본 연구에서는 현열 형태의 저온 열원과 LNG의 냉열을 이용하는 복합 동력 생산시스템에 대한 열역학적 성능 해석을 수행하였다. 시스템의 작동유체로서 암모니아-물의 비공비 혼합물을 고려하였으며 재생기가 없는 기본 사이클과 있는 재생 사이클의 경우를 비교 해석하였다. 작동유체의 암모니아 농도나 응축 온도에 따라 시스템의 순생산일, 엑서지 파괴, 열효율이나 엑서지 효율 등에 미치는 다양한 영향에 대해 분석하고 논의하였다. 해석 결과는 시스템의 성능 특성이 작동유체의 암모니아 농도나 응축 온도에 따라 민감하게 변화하며, 열원유체 단위질량당 순생산일은 기본 사이클이 유리하나 열효율이나 엑서지 효율은 재생 사이클이 유리하다는 사실을 보여준다.

다양한 형상의 판형 휜을 장착한 원통다관형 열교환기의 열성능 해석 (Thermal Performance Analysis of a Shell-and-Tube Heat Exchanger with Plate Fins of Various Shape)

  • 신지영;손영석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권4호
    • /
    • pp.648-656
    • /
    • 2004
  • In this study, a highly efficient shell-and-tube heat exchanger with plate fins is considered to improve thermal performance of the conventional shell-and-tube heat exchanger. This type of shell-and-tube heat exchanger with plate fins of various shape is simulated three-dimensionally using a commercial thermal-fluid analysis code. CFX4.4. The effect of the shape of the plate fin on heat transfer characteristics is also investigated by the simulation. Plate fins of four different shapes. plane, plane-slit. wave. and wave-slit fins, are considered. The flow fields, pressure drop and heat transfer characteristics in the heat exchanger are calculated. It is proved that the shell-and-tube heat exchanger with plate fins is superior to the conventional shell-and-tube heat exchanger without plate fins in terms of heat transfer. The shape of the plate fin is important in the performance of a heat exchanger such as heat transfer and pressure drop.

LTNE 모델을 이용한 다공성 채널 입구영역에서의 열전달 특성 해석 (Analysis of Heat Transfer Characteristics in the Thermally Developing Region of a Porous Channel by LTNE Model)

  • 이상태;이관수;김서영
    • 대한기계학회논문집B
    • /
    • 제26권7호
    • /
    • pp.983-990
    • /
    • 2002
  • A numerical analysis has been carried out on forced convection heat transfer in the developing region of a porous channel. The channel is filled with an isotropic porous medium. At the channel walls, a uniform heat flux is given. Comprehensive numerical solutions are acquired to the Brinkman-Forchheimer extended Darcy equation and the LTNE model which does not employ the assumption of local thermal equilibrium between solid and fluid phases. Details of thermal fields in the developing region are examined over wide ranges of the thermal parameters. The numerical solutions at the fully developed region are compared with the previous analytical solutions. The correlation for predicting local Nusselt number in a porous channel is proposed.

원자로냉각재계통 압력경계밸브 내부누설 평가 (Assessment of Internal Leak on RCS Pressure Boundary Valves)

  • 박준현;문호림;정일석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.322-327
    • /
    • 2001
  • The internal leaks of RCS pressure boundary valves may cause thermal fatigue crack because of the TASCS in RCS branch line. After experienced unisolable piping failures in several PWR plants, many studies have peformed to understand these phenomena and various methods were applied to ensure the structural integrity of piping. In this paper, the cause of unisolable piping failures and the alternatives to prevent recurrence of failure were reviewed. Also, the severity of piping failure including susceptibility of valve leaks was evaluated for the Westinghouse 2-loop plant. The length of turbulent penetration on RHR inlet piping was measured and, thermal fluid analysis and fatigue analysis was performed for this piping. As a means of ensuring the structural integrity, temperature monitoring and specialized UT and other alternatives were compared for the further application.

  • PDF