• Title/Summary/Keyword: Thermal-expansion chamber

Search Result 54, Processing Time 0.028 seconds

Experimental Study on the Physical and Mechanical Properties of a Copper Alloy for Liquid Rocket Combustion Chamber Application (액체로켓 연소기용 구리합금의 열/기계적 특성에 관한 실험적 연구)

  • Ryu, Chul-Sung;Baek, Un-Bong;Choi, Hwan-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1494-1501
    • /
    • 2006
  • Mechanical and physical properties of a copper alloy for a liquid rocket engine(LRE) combustion chamber liner application were tested at various temperatures. All test specimens were heat treated with the condition they might experience during actual fabrication process of the LRE combustion chamber. Physical properties measured include thermal conductivity, specific heat and thermal expansion data. Uniaxial tension tests were preformed to get mechanical properties at several temperatures ranging from room temperature to 600$^{\circ}C$. The result demonstrated that yield stress and ultimate tensile stress of the copper alloy decreases considerably and strain hardening increases as the result of the heat treatment. Since the LRE combustion chamber operates at higher temperature over 400$^{\circ}C$, the copper alloy can exhibit time-dependent behavior. Strain rate, creep and stress relaxation tests were performed to check the time-dependent behavior of the copper alloy. Strain rate tests revealed that strain rate effect is negligible up to 400$^{\circ}C$ while stress-strain curve is changed at 500$^{\circ}C$ as the strain rate is changed. Creep tests were conducted at 250$^{\circ}C$ and 500$^{\circ}C$ and the secondary creep rate was found to be very small at both temperatures implying that creep effect is negligible for the combustion chamber liner because its operating time is quite short.

Measurement of thermal expansion characteristic of root canal filling materials : Gutta-percha and Resilon (수 종의 근관충전재의 열팽창 특성 측정 : Gutta-percha와 Resilon)

  • Jeon, Kyung-A;Lee, In-Bog;Bae, Kwang-Shik;Lee, Woo-Cheol;Baek, Seung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.5
    • /
    • pp.344-351
    • /
    • 2006
  • The purpose of this study was to evaluate the thermal expansion characteristics of injectable ther-moplasticized gutta-perchas and a Resilon. The materials investigated are Obtura gutta-percha, Diadent gutta-percha, E&Q Gutta-percha Bar and Epiphany (Resilon). The temperature at the heating chamber orifice of an Obtura II syringe and the extruded gutta-percha from the tip of both 23- and 20-gauge needle was determined using a Digital thermometer. A cylindrical ceramic mold was fabricated for thermal expansion test, which was 27 mm long, with an internal bore diameter of 3 mm and an outer diameter of 10 mm. The mold was filled with each experimental material and barrel ends were closed with two ceramic plunger. The samples in ceramic molds were heated in a dilatometer over the temperature range from $25^{\circ}C$ to $75^{\circ}C$. From the change of specimen length as a function of temperature, the coefficients of thermal expansion were deter-mined. There was no statistical difference between four materials in the thermal expansion in the range from $35^{\circ}C$ to $55^{\circ}C$ (p > 0.05). However, Obtura Gutta-percha showed smaller thermal expansion than Diadent and Metadent ones from $35^{\circ}C$ to $75^{\circ}C$ (p < 0.05). The thermal expansion of Epiphany was similar to those of the other gutta-percha groups.

Development of Hybrid Extinction $SF_6$ Interrupter using Analytical and Experimental Method ($SF_6$ 자력팽창 소호부 개발에 관한 실험 및 해석적 고찰)

  • Sohn, J.M.;Kang, J.S.;Lee, B.W.;Kim, Y.K.;Kim, D.K.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.696-698
    • /
    • 2001
  • This paper considers the research of the hybrid interrupter which adopts both rotating arc and thermal expansion technology. The operating principle of this device depends on rapid arc rotation due to the magnetic field created by the fault current through a coil which is mounted on contacts and also relies on the principle of thermal expansion created by arc energy in extinguishing chamber and finally causes pressure rise in expansion volume. To develope this type of interrupter, we introduced analytical analysis including electromagnetic and arc fluid simulation and experimental analysis including construction of current source generation facility and arc behavior measurements. In this research, the principle of the interrupting techniques are given and analytical and experimental results of hybrid interrupter which is developed by new technology is introduced.

  • PDF

Development of Thermal Stress Measuring System (온도응력 측정용 시험장치의 개발)

  • 전상은;김국한;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.3
    • /
    • pp.228-236
    • /
    • 2001
  • Even though numerous researches have been performed for the prediction of thermal stresses in mass concrete structures by both analytical and experimental means, the limitations exist for both approaches. In analytical approach, the fundamental limitation is derived from the difficulty of predicting concrete properties such as modulus of elasticity, coefficient of thermal expansion, etc.. In experimental approach, there are many uncertainties related to in-situ conditions, because a majority of researches have focused on measuring thermal stresses in actual and simulated structures. In this research, an experimental device measuring thermal stresses directly in a laboratory setting is developed. The equipment is located in a temperature chamber that follows the temperature history previously obtained from temperature distribution analysis. Thermal strains are measured continuously by a strain gauge in the device and the corresponding thermal stresses are calculated simply by force equilibrium condition. For the verification of the developed device, a traditional experiment measuring thermal strains from embedded strain gauges is performed simultaneously. The results show that the thermal strain values measured by the newly developed device agree well with the results from the benchmark experiment.

The Flow Analysis of Arc in LG Hybrid Interrupter Using PHOENICS Code (PHOENICS Code를 이용한 자력팽창 소호부 내 아크유동해석)

  • Lee, J.C.;Lee, B.W.;Oh, I.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.44-46
    • /
    • 2001
  • This paper describes the use of the PHOENICS CFD package for the simulation of the high-current period of the arcing process in a hybrid rotating arc/auto expansion by interrupter. The operating principle of this device depends on rapid arc rotation due to the magnetic field created by the fault current through a coil which is mounted on contacts and also relies on the principle of thermal expansion created by arc energy in extinguishing chamber and finally causes pressure rise in expansion volume. This paper is divided into three main sections. The first gives a brief overview of the interrupter. The second section gives a full description of the methods used in the calculation. The final section presents some sample results for the hybrid interrupter.

  • PDF

Submicro-displacement Measuring System with Moire Interferometer and Application to the Themal Deformation of PBGA Package (무아레 간섭계 초정밀 변위 측정장치의 설계 및 PBGA 패키지 열변형 측정에의 응용)

  • Oh, Ki-Hwan;Joo, Jin-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1646-1655
    • /
    • 2004
  • A description of the basic principles of moire interferometry leads to the design of a eight-mirror four-beam interferometer for obtaining fringe patterns representing contour-maps of in-Plane displacements. The technique is implemented by the optical system using an environmental chamber for submicro-displacement mesurement. In order to estimate the reliability and applicabili쇼 of the system developed, the measurement of coefficient of thermal expansion (CTE) for a aluminium block is performed. Consequently, the system is applied to the measurement of thermal deformation of a WB-PBGA package assembly. Temperature dependent analyses of global and local deformations are presented to study the effect of the mismatch of CTE between materials composed of the package assemblies. Bending displacements of the packages and average strains of solder balls are documented. Thermal induced displacements calculated by FEM agree quantitatively with experimental results.

Study on the Physical Characteristics of Water Supply Steel Pipe according to Temperature Change (수도용 강관의 온도변화에 따른 물리적 특성에 대한 연구)

  • Kim, Woo-young;Jang, Am
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.12
    • /
    • pp.733-740
    • /
    • 2017
  • 'The facilities standards of water supply' issued by the Ministry of Environment in 2004 indicates that expansion joints cannot be used in welding water supply steel pipes. However, their reason is not clear and it is difficult to confirm the stability of the steel pipe for a water supply pipeline. The purpose of this study is to determine whether or not an expansion joint is necessary to improve the stability of water supply in steel pipe through a displacement analysis of the pipework. The test results are as follows. Firstly, it was found that expansion and contraction of the water supply steel pipe (D 2,400 mm) occur repeatedly in 4 cycles per year, and the maximum expansion and contraction amount of the pipe is 13.03 mm in 1.24 km pipelines. Secondly, the thermal stress caused by expansion and contraction of the steel pipe is $13.7{\sim}36.1kgf/cm^2$ according to the burial depth (0~4 m). The main comparison factors to determine the stability of the steel pipe (STWW 400) were the allowable tensile strength and the fatigue limit, which were computed to be $4,100kgf/cm^2$ and $1,840kgf/cm^2$, respectively. Finally, the thermal stress of the steel pipe is very small compared to the allowable tensile stress and fatigue stress. Therefore, thermal stress does not affect the stability of the steel pipe, although the expansion and contraction of the steel pipe occurs by temperature changes. In conclusion, the study demonstrated that expansion joints are not required in water supply steel pipelines.

Stresses in FGM pressure tubes under non-uniform temperature distribution

  • Eraslan, Ahmet N.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.4
    • /
    • pp.393-408
    • /
    • 2007
  • The effects of material nonhomogeneity and nonisothermal conditions on the stress response of pressurized tubes are assessed by virtue of a computational model. The modulus of elasticity, the Poisson's ratio, the yield strength, and the coefficient of thermal expansion, are assumed to vary nonlinearly in the tube. A logarithmic temperature distribution within the tube is proposed. Under these conditions, it is shown that the stress states and the magnitudes of response variables are affected significantly by both the material nonhomogeneity and the existence of the radial temperature gradient.

Measurement of Thermal Deformation of a Double Ring Structure using Digital Image Correlation Technique (디지털 영상 보정 기법을 이용한 이중 링 구조물의 열변형 측정)

  • Jin, Tailie;Goo, Nam-Seo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.9
    • /
    • pp.877-882
    • /
    • 2011
  • In this paper, thermal deformation of a double ring structure using digital image correlation technique (DIC) was measured. The double ring structure consisted of two parts; the inner ring was aluminium which had a large thermal expansion coefficient and the outer ring was titanium which had a small thermal expansion coefficient. We heated the double ring structure from $50^{\circ}C$ to $200^{\circ}C$ in a chamber and at the same time, two cameras captured surface images of the double ring structure. Initially, there was a 21 ${\mu}m$ gap between the inner ring and outer ring. The gap was closed at around $80^{\circ}C$ and after that, two rings expanded together. In order to compare the experimental results with analysis results, a finite element analysis was performed using ANSYS. The results of DIC measurement and ANSYS analysis were compared and agreed well.

Numerical Simulations on the Thermal Flow and Particle Behaviors in the Gas Reversal Chamber of a Syngas Cooler for IGCC (IGCC 합성가스 냉각기 GRC의 열유동 및 입자거동 특성에 대한 전산해석 연구)

  • Park, Sangbin;Ye, Insoo;Ryu, Changkook;Kim, Bongkeun
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.1
    • /
    • pp.21-26
    • /
    • 2013
  • In the Shell coal gasification process, the syngas produced in a gasifier passes through a syngas cooler for steam production and temperature control for gas cleaning. Fly slag present in the syngas may cause major operational problems such as erosion, slagging, and corrosion, especially in the upper part of the syngas cooler (gas reversal chamber, GRC). This study investigates the flow, heat transfer and particle behaviors in the GRC for a 300 MWe IGCC process using computational fluid dynamics. Three operational loads of 100%, 75% and 50% were considered. The gas and particle flows directly impinged on the wall opposite to the syngas inlet, which may lead to erosion of the membrane wall. The heat transfer to the wall was mainly by convection which was larger on the side wall at the inlet level due to the expansion of the cross-section. In the evaporator below the GRC, the particles were concentrated more on the outer channels, which needs to be considered for alleviation of fouling and blockage.