• Title/Summary/Keyword: Thermal-Structural Coupled Field Analysis

Search Result 36, Processing Time 0.033 seconds

Static behavior of thermally loaded multilayered Magneto-Electro-Elastic beam

  • Vinyas, M.;Kattimani, S.C.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.4
    • /
    • pp.481-495
    • /
    • 2017
  • The present article examines the static response of multilayered magneto-electro-elastic (MEE) beam in thermal environment through finite element (FE) methods. On the basis of the minimum total potential energy principle and the coupled constitutive equations of MEE material, the FE equilibrium equations of cantilever MEE beam is derived. Maxwell's equations are considered to establish the relation between electric field and electric potential; magnetic field and magnetic potential. A simple condensation approach is employed to solve the global FE equilibrium equations. Further, numerical evaluations are made to examine the influence of different in-plane and through-thickness temperature distributions on the multiphysics response of MEE beam. A parametric study is performed to evaluate the effect of stacking sequence and different temperature profiles on the direct and derived quantities of MEE beam. It is believed that the results presented in this article serve as a benchmark for accurate design and analysis of the MEE smart structures in thermal applications.

Vibration Analysis of Composite Cylindrical Shells Subjected to Electromagnetic and Thermal Fields (자기장 및 열하중을 받는 복합재료 원통셸의 진동해석)

  • Park, Sang-Yun;Kim, Sung-Kyun;Choi, Jong-Woon;Song, Oh-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.8
    • /
    • pp.791-799
    • /
    • 2012
  • In this paper free vibration analysis of symmetric and cross-ply elastic laminated shells based on FSDT was performed through discretization of equations of motion and boundary condition. Structural model of laminated composite cylindrical shells subjected to a combination of magnetic and thermal fields is developed via Hamilton's variational principle. These coupled equations of motion are based on the electromagnetic equations(Faraday, Ampere, Ohm, and Lorenz equations) and thermal equations which are involved in constitutive equations. Variations of dynamic characteristics of composite shells with applied magnetic field, temperature gradient, and stacking sequence are investigated and pertinent conclusions are derived.

Parametric Study of Gas Turbine Engine Disc using Axisymmetry and Sector Analysis Model (축대칭 및 섹터 해석 모델을 활용한 가스터빈 엔진 디스크의 형상 변수 고찰)

  • Huh, Jae Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.769-774
    • /
    • 2013
  • Turbine blades and disc, which are one of the most important rotating parts of a gas turbine engine, are required to have highly efficient performance in order to minimize the total life cycle costs. Owing to these requirements, these components are exposed to severe conditions such as extreme turbine inlet temperatures, high compression ratios, and high speeds. To evaluate the structural integrity of a turbine disc under these conditions, material modeling and finite element analysis techniques are essential; furthermore, shape optimization is necessary for determining the optimal solution. This study aims to generate 2D finite element models of an axisymmetry model and a sector one and to perform thermal-structural coupled-field analysis and contact analysis. Structurally vulnerable areas such as the disc bore and disc-blade interface region are analyzed by a parametric study. Finally, an improved design is provided based on the results, and the necessity of elaborate shape optimization is confirmed.

Evaluation of Structural Integrity and Heat Exchange Efficiency for Dimpled Tube Type EGR Cooler (딤플 튜브형 EGR Cooler 구조건전성 및 열효율 평가)

  • Seo, Young-Ho;Lee, Hyun-Min;Park, Jung-Won;Ku, Tae-Wan;Kim, Jeong;Kang, Beom-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.554-559
    • /
    • 2008
  • Most of vehicle manufacturers have applied exhaust gas recirculation (EGR) system to the development of diesel engines in order to obtain the high thermal efficiency without $NO_X$ and Particulate Matter (PM) emitted from the engine. EGR system, which reflow a cooled exhaust gas from vehicles burning diesel as fuel to a combustion chamber of engine, has been used to solve this problem. In order to confirm the safety of the EGR system, finite element analysis was carried out. The safety of EGR system against temperature variation in the shell and tubes was evaluated through the thermal and structural analysis, and the modal analysis using ANSYS was also performed. Finally, the performance of EGR system was verified through the experiment and numerical simulation using effectiveness-NTU method. Program for the estimation of the heat exchange efficiency of the EGR system with regard to the dimpled tube shape was developed.

  • PDF

Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating

  • Othman, Mohamed I.A.;Fekry, Montaser;Marin, Marin
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.621-629
    • /
    • 2020
  • The present paper aims to study the influence of the magnetic field and initial stress on the 2-D problem of generalized thermo-viscoelastic material with voids subject to thermal loading by a laser pulse in the context of the Lord-Shulman and the classical dynamical coupled theories. The analytical expressions for the physical quantities are obtained in the physical domain by using the normal mode analysis. These expressions are calculated numerically for a specific material and explained graphically. Comparisons are made with the results predicted by the Lord-Shulman and the coupled theories in the presence and absence of the initial stress and the magnetic field.

Electromagnetic field and initial stress on a porothermoelastic medium

  • Abd-Elaziz, Elsayed M.
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.1-13
    • /
    • 2021
  • In this study, the porothermoelastic problem with the effect of the magnetic field and initial stress was investigated. We applied normal mode analysis to solve the resulting non-dimensional coupled equations. Numerical results for the displacements, temperature distribution, pore pressure, stresses, induced electric field and induced magnetic field distributions are presented graphically and discussed. The medium deformed because of thermal shock and due to the application of the magnetic field, there result an induced magnetic and an induced electric field in the medium. Numerical analyses are given graphically on the square (2D) and cubic (3D) domains to illustrate the effects of the porosity parameter, magnetic field and initial stress parameter on the physical variables.

On scale-dependent stability analysis of functionally graded magneto-electro-thermo-elastic cylindrical nanoshells

  • Asrari, Reza;Ebrahimi, Farzad;Kheirikhah, Mohammad Mahdi
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.659-674
    • /
    • 2020
  • The present paper employs nonlocal strain gradient theory (NSGT) to study buckling behavior of functionally graded magneto-electro-thermo-elastic (FG-METE) nanoshells under various physical fields. NSGT modeling of the nanoshell contains two size parameters, one related to nonlocal stress field and another related to strain gradients. It is considered that mechanical, thermal, electrical and magnetic loads are exerted to the nanoshell. Temperature field has uniform and linear variation in nanoshell thickness. According to a power-law function, piezo-magnetic, thermal and mechanical properties of the nanoshell are considered to be graded in thickness direction. Five coupled governing equations have been obtained by using Hamilton's principle and then solved implementing Galerkin's method. Influences of temperature field, electric voltage, magnetic potential, nonlocality, strain gradient parameter and FG material exponent on buckling loads of the FG-METE nanoshell have been studied in detail.

A Study on Thermal and Modal Characteristics for EGR System with Dimpled Rectangular Tube (딤플 사각 튜브형 배기 가스 재순환 시스템의 열 및 진동 특성에 관한 연구)

  • Seo, Young-Ho;Heo, Sung-Chan;Kwon, Young-Seok;Ku, Tae-Wan;Kim, Jeong;Kang, Beom-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.3
    • /
    • pp.115-125
    • /
    • 2008
  • Recently, Exhaust Gas Recirculation (EGR) system which re-flow a cooled exhaust gas from vehicles burning diesel as fuel to a combustion chamber of engine has been used to solve the serious air pollution. For the design and mass production of EGR system, it is essential to ensure structural integrity evaluation. The EGR system consisted of ten dimpled oval core rectangular tubes, two fix-plates, two coolant pipes, shell body and two flanges in this study. To confirm the safety of the designed system, finite element modeling about each component such as the dimpled oval core tube with the dimpled shape and others was carried out. The reliability of EGR system against exhaust gas flow with high temperature was investigated by flow and pressure analysis in the system. Also, thermal and strength analysis were verified the safety of EGR system against temperature change in the shell and tubes. Furthermore, modal analysis using ANSYS was also performed. From the results of FE analysis, there were confirmed that EGR system was safe against the flow of exhaust gas, temperature change in EGR system and vibration on operation condition, respectively.