Browse > Article
http://dx.doi.org/10.12989/sem.2017.63.4.481

Static behavior of thermally loaded multilayered Magneto-Electro-Elastic beam  

Vinyas, M. (Department of Mechanical Engineering, National Institute of Technology Karnataka)
Kattimani, S.C. (Department of Mechanical Engineering, National Institute of Technology Karnataka)
Publication Information
Structural Engineering and Mechanics / v.63, no.4, 2017 , pp. 481-495 More about this Journal
Abstract
The present article examines the static response of multilayered magneto-electro-elastic (MEE) beam in thermal environment through finite element (FE) methods. On the basis of the minimum total potential energy principle and the coupled constitutive equations of MEE material, the FE equilibrium equations of cantilever MEE beam is derived. Maxwell's equations are considered to establish the relation between electric field and electric potential; magnetic field and magnetic potential. A simple condensation approach is employed to solve the global FE equilibrium equations. Further, numerical evaluations are made to examine the influence of different in-plane and through-thickness temperature distributions on the multiphysics response of MEE beam. A parametric study is performed to evaluate the effect of stacking sequence and different temperature profiles on the direct and derived quantities of MEE beam. It is believed that the results presented in this article serve as a benchmark for accurate design and analysis of the MEE smart structures in thermal applications.
Keywords
coupled properties; finite element; magneto-electro-elastic; potential, thermal loads;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Chen, W.Q., Lee, K.Y. and Ding, H.J. (2005), "On free vibration of non-homogeneous transversely isotropic magneto-electroelastic plates", J. Sound Vib., 279(1), 237-251.   DOI
2 Civalek, O., Demir, C. and Akgoz. B. (2009), "Static analysis of single walled carbon nanotubes (SWCNT) based on Eringen's nonlocal elasticity theory", Int. J. Eng. Appl. Sci., 1(2), 47-56.
3 Civalek, O., Korkmaz, A. and Demir, C. (2010), "Discrete singular convolution approach for buckling analysis of rectangular Kirchhoff plates subjected to compressive loads on twoopposite edges", Adv. Eng. Softw., 41(4), 557-560.   DOI
4 Daga, A., Ganesan, N. and Shankar, K. (2009), "Transient dynamic response of cantilever magneto-electro-elastic beam using finite elements", Int. J. Comput. Meth. Eng. Sci. Mech., 10(3), 173-185.   DOI
5 Ebrahimi, F. and Barati, M.R. (2016a), "Dynamic modeling of a thermo-piezo-electrically actuated nanosize beam subjected to a magnetic field", Appl. Phys. A, 122, 451.   DOI
6 Ebrahimi, F. and Barati, M.R. (2016b), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment", J. Vib. Control, 10.1177/1077546316646239.
7 Ebrahimi, F. and Jafari, A. (2016), "Thermo-mechanical vibration analysis of temperature-dependent porous FG beams based on Timoshenko beam theory", Struct. Eng. Mech., 59(2), 343-371.   DOI
8 Hosseini, M. and Dini, A. (2015), "Magneto-thermo-elastic response of a rotating functionally graded cylinder", Struct. Eng. Mech., 56(1), 137-156.   DOI
9 Huang, D.J., Ding, H.J. and Chen, W.Q. (2010), "Static analysis of anisotropic functionally graded magneto-electro-elastic beams subjected to arbitrary loading", Eur. J. Mech. A Solid., 29(3), 356-369.   DOI
10 Kaghazian, A., Hajnayeb, A. and Foruzande, H. (2017), "Free vibration analysis of a piezoelectric nanobeam using nonlocal elasticity theory", Struct. Eng. Mech., 61(5), 617-624.   DOI
11 Kattimani, S.C. and Ray, M.C. (2014), "Active control of large amplitude vibrations of smart magneto-electro-elastic doubly curved shells", Int. J. Mech. Mater. Des., 10(4), 351-378.   DOI
12 Kattimani, S.C. and Ray, M.C. (2014), "Smart damping of geometrically nonlinear vibrations of magneto-electro-elastic plates", Compos. Struct., 14, 51-6.
13 Kattimani, S.C. and Ray, M.C. (2015), "Control of geometrically nonlinear vibrations of functionally graded magneto-electroelastic plates", Int. J. Mech. Sci., 99, 154-167.   DOI
14 Ke, L.L. and Wang, Y.S. (2014), "Free vibration of size-dependent magneto-electro-elastic nanobeams based on the nonlocal theory", Phys. E., 63, 52-61.   DOI
15 Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2014), "Free vibration of size-dependent magnetoelectro-elastic nanoplates based on the nonlocal theory", Acta. Mech. Sinica., 30(4), 516-525.   DOI
16 Kondaiah, P., Shankar, K. and Ganesan, N. (2012), "Studies on magneto-electro-elastic cantilever beam under thermal environment", Coupl. Syst. Mech., 1(2), 205-217.   DOI
17 Kumaravel, A., Ganesan, N. and Sethuraman, R. (2007), "Steadystate analysis of a three-layered electro-magneto-elastic strip in a thermal environment", Smart Mater. Struct., 16(2), 282-295.   DOI
18 Kondaiah, P., Shankar, K. and Ganesan, N. (2013), "Pyroelectric and pyromagnetic effects on behavior of magneto-electro-elastic plate", Coupl. Syst. Mech., 2, 1-22.   DOI
19 Kuang, Z.B. (2011), "Physical variational principle and thin plate theory in electro-magneto-elastic analysis", Int. J. Solid. Struct., 48(2), 317-325.   DOI
20 Kumaravel, A., Ganesan, N. and Sethuraman, R. (2007), "Buckling and vibration analysis of layered and multiphase Magneto-Electro-Elastic beam under thermal environment", Multidisc. Model. Mater. Struct., 3(4), 461-476.   DOI
21 Lage, G.R., Soares, C.M.M., Soares, C.A.M. and Reddy, J.N. (2004), "Layerwise partial mixed finite element analysis of magneto-electro-elastic plates", Comput. Struct., 82, 1293-1301.   DOI
22 Li, Y.S., Cai, Z.Y. and Shi, S.Y. (2014), "Buckling and free vibration of magnetoelectroelastic nanoplate based on nonlocal theory", Compos. Struct., 111, 522-529.   DOI
23 Mahieddine, A. and Quali, M. (2008) "Finite element formulation of a beam with piezoelectric patch", J. Eng. Appl. Sci., 3, 803-807.
24 Moita, J.M.S, Soares, C.M.M. and Soares, C.A.M. (2009), "Analyses of magneto-electro-elastic plates using a higher order finite element model", Compos. Struct., 91(4), 421-426.   DOI
25 Milazzo, A. (2012), "An equivalent single-layer model for magnetoelectroelastic multilayered plate dynamics", Compos. Struct., 94(6), 2078-2086.   DOI
26 Milazzo, A. and Orlando, C. (2012), "An equivalent single-layer approach for free vibration analysis of smart laminated thick composite plates", Smart Mater. Struct., 21(7), 075031.   DOI
27 Milazzo, A., Orlando, C. and Alaimo, A. (2009), "An analytical solution for the magneto-electro-elastic bimorph beam forced vibrations problem", Smart Mater. Struct., 18(8), 85012.   DOI
28 Pan, E. and Heyliger, H. (2002), "Free vibrations of simply supported and multilayered magneto-electro-elastic plates", J. Sound Vib., 252(3), 429-442.   DOI
29 Pan, E. and Heyliger, P.R. (2003), "Exact solutions for magnetoelectro-elastic laminates in cylindrical bending", Int. J. Solid. Struct., 40(24), 6859-6876.   DOI
30 Ramirez, F., Heyliger, P.R. and Pan, E. (2006), "Free vibration response of two-dimensional magneto-electro-elastic laminated plates", J. Sound Vib., 292, 626-644.   DOI
31 Razavi, S. and Shooshtari, A. (2015), "Nonlinear free vibration of magneto-electro-elastic rectangular plates", Compos. Struct., 119, 377-384.   DOI
32 Van Run, A.M.J.G., Terrell, D.R. and Scholing, J.H. (1974), "An in situ grown eutectic magnetoelectric composite material", J. Mater. Sci., 9(10), 1710-1714.   DOI
33 Akgoz, B. and Civalek, O. (2013), "Buckling analysis of linearly tapered micro-columns based on strain gradient elasticity", Struct. Eng. Mech., 48(2), 195-205.   DOI
34 Sladek, J., Sladek, V., Krahulec, S. and Pan, E. (2013), "The MLPG analyses of large deflections of magnetoelectroelastic plates", Eng. Anal. Bound. Elem., 37(4), 673-682.   DOI
35 Sunar, M., Al-Garni, A.Z., Ali, M.H. and Kahraman, R. (2002), "Finite element modeling of thermopiezomagnetic smart structures", AIAA J., 40, 1845-1851.
36 Tauchert, T.R. (1996), "Cylindrical bending of hybrid laminates under thermo-electro-mechanical loading", J. Therm. Stress., 19, 287-296.   DOI
37 Vaezi, M., Shirbani, M.M. and Hajnayeb, A. (2016), "Free vibration analysis of magneto-electro-elastic microbeams subjected to magneto-electric loads", Phys. E, 75, 280-286.   DOI
38 Wang, J., Chen, L. and Fang, S. (2003), "State vector approach to analysis of multilayered magneto-electro-elastic plates", Int. J. Solid. Struct., 40(7), 1669-1680.   DOI
39 Phoenix, S.S., Satsangi, S.K. and Singh, B.N. (2009), "Layer-wise modelling of magneto-electro-elastic plates", J. Sound Vib., 324(3-5), 798-815.   DOI
40 Wang, X. and Shen, Y. (2002), "The general solution of threedimensional problems in magnetoelectroelastic media", Int. J. Eng. Sci., 40(10), 1069-1080.   DOI
41 Xin, L. and Hu, Z. (2015), "Free vibration of layered magnetoelectro-elastic beams by SS-DSC Approach", Compos. Struct., 125, 96-103.   DOI
42 Barati, M.R. and Shahverdi, H. (2016), "A four-variable plate theory for thermal vibration of embedded FG nanoplates under non-uniform temperature distributions with different boundary conditions", Struct. Eng. Mech., 60(4), 707-727.   DOI
43 Akgoz, B. and Civalek, O. (2015), "A novel microstructuredependent shear deformable beam model", Int. J. Mech. Sci., 99, 10-20.   DOI
44 Akgoz, B. and Civalek, O. (2015), "Bending analysis of FG microbeams resting on Winkler elastic foundation via strain gradient elasticity", Compos. Struct., 134, 294-301.   DOI
45 Alaimo, A., Benedetti, I. and Milazzo, A. (2014), "A finite element formulation for large deflection of multilayered magnetoelectro-elastic plates", Compos. Struct., 107, 643-653.   DOI
46 Ansari, R., Hasrati, E., Gholami, R. and Sadeghi, F. (2015), "Nonlinear analysis of forced vibration of nonlocal third-order shear deformable beam model of magneto-electro-thermo elastic nanobeams", Compos. Part. B. Eng., 83, 226-241.   DOI
47 Badri, T.M. and Al-Kayiem, H.H, (2013), "Analytical solution for simply supported and multilayered Magneto-Electro-Elastic Plates", Asian J. Sci. Res., 6, 236-244.   DOI
48 Bhangale, R.K. and Ganesan, N. (2006), "Free vibration of simply supported functionally graded and layered magneto-electroelastic plates by finite element method", J. Sound Vib., 294, 1016-1038.   DOI
49 Buchanan, G.R. (2004), "Layered versus multiphase magnetoelectro-elastic composites", Compos. Part. B. Eng., 35(5), 413-420.   DOI
50 Chen, J., Chen, H., Pan, E. and Heyliger, P.R. (2007), "Modal analysis of magneto-electro-elastic plates using the state-vector approach", J. Sound Vib., 304(3-5), 722-734.   DOI
51 Xue, C.X., Pan, E., Zhang, S.Y. and Chu, H.J. (2011), "Large deflection of a rectangular magnetoelectroelastic thin plate", Mech. Res. Commun., 38(7), 518-523.   DOI